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Introduction

In this introductory chapter we collect basic definitions, formulate main
results and discuss some of the motivations and consequences. In Sec-
tion 1.1 we start with an informal review of classical geometries in order
to motivate the general notion of geometry as introduced by J. Tits in
the 50’s. In Section 1.2 we discuss morphisms of geometries and two
of their most important special cases, coverings and automorphisms.
Our main interest is in flag-transitive geometries. By a standard princi-
ple a flag-transitive geometry ¢ can be uniquely reconstructed from its
flag-transitive automorphism group G and the embedding in G of the
amalgam .o/ (defined in Section 1.3) of maximal parabolic subgroups
corresponding to the action of G on %. In Section 1.4 we formulate a
condition under which an abstract group G and a subamalgam &/ in G
lead to a geometry. In Section 1.5 we formulate the most fundamental
principle in the area which relates the universal cover of a flag-transitive
geometry ¢4 and the universal completion of the amalgam of maximal
parabolic subgroups corresponding to a flag-transitive action on %. In
Section 1.6 we discuss parabolic geometries of finite groups of Lie type.
These geometries belong to the class of so-called Tits geometries charac-
terized by the property that all rank 2 residues are classical generalized
polygons. We formulate the local characterization of Tits geometries
which shows a special role of C;-geometries. We also formulate a very
useful description of flag-transitive automorphism groups of classical Tits
geometries due to G. Seitz. A very important non-classical Tits geometry,
known as the Alt;-geometry, is discussed in Section 1.7. In Section 1.8 we
apply the characterization of Tits geometries to C,(2)-geometries which
play a very special role in our exposition. In Section 1.9 we mimic the
construction of C,(2)-geometries of symplectic groups to produce a rank
5 tilde geometry of the Monster group. In Section 1.10 the classification
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2 Introduction

result for flag-transitive Petersen and tilde geometries is stated, which
shows in particular that the Monster is strongly characterized as a flag-
transitive automorphism group of a rank 5 tilde geometry. In Section 1.11
we introduce and discuss a very important notion of natural representa-
tions of geometries. Section 1.12 contains a brief historical essay about
the classification of flag-transitive Petersen and tilde geometries. In Sec-
tion 1.13 we present some implications of the classification including the
identification of Y -groups. In the final section of the chapter we fix our
terminology and notation concerning groups, graphs and geometries. The
terminology and notation are mostly standard and we start using them
in the earlier sections of the chapter without explanations.

1.1 Basic definitions

We start this chapter with a brief and informal review of the geometries of
classical groups in order to motivate the general definition of geometries.

Let G be a finite classical group (assuming the projective version).
The group G itself and its geometry can be defined in terms of the
natural module which is an n-dimensional vector space V = V,(q) over
the Galois field GF(q) of order gq. Here g is a power of a prime number p
called the characteristic of the field. There is a sesquilinear form ¥ on V
which is either trivial (identically equal to zero) or non-singular and the
elements of G are projective transformations of ¥ which preserve ¥ up to
multiplication by scalars. If ¥ is trivial then G is just a projective linear
group associated with V. If ¥ is non-singular, it is symplectic, unitary
or orthogonal and G is the symplectic, unitary or orthogonal group of a
suitable type determined by n, ¢ and the type of ¥. We have introduced
the trivial form in the case of linear groups in order to treat all classical
groups uniformly.

For a subspace W of ¥V we can consider the restriction of ¥ to W.
The subspaces on which ¥ restricts trivially play a very special rdle and
they are called totally singular subspaces of V with respect to . Clearly
every subspace of a totally singular subspace is also totally singular and
in the case of linear groups all subspaces are totally singular. If ¥ is a
non-singular form then by the Witt theorem all maximal totally singular
subspaces have the same dimension known as the Witt index of P.

The geometry ¥ = %(G) of a classical group G is the set of all
proper totally singular subspaces in the natural module V with respect
to the invariant form ¥ together with a symmetrical binary incidence
relation * under which two subspaces are incident if and only if one of

© Cambridge University Press www.cambridge.org



http://www.cambridge.org/0521413621
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

0521413621 - Geometry of Sporadic Groups I Petersen and Tilde Geometries
A. A.Ivanov

Excerpt

More information

1.1 Basic definitions 3

them contains the other one. In the case of a linear group we obtain
the projective geometry associated with the natural module and in the
remaining cases we obtain various polar spaces.

By the definition every element of a classical group geometry is incident
to itself which means that the relation * is reflexive. One can consider
% as a graph on the set of elements whose edges are pairs of incident
elements. Since two subspaces of the same dimension are incident if and
only if they coincide, one can see (ignoring the loops) that the graph
is multipartite. Two vertices are contained in the same part if and only
if they have the same dimension as subspaces of V. It is natural to
define the type of an element to be the dimension of the corresponding
subspace. The Witt theorem and its trivial analogue for the case of linear
groups imply that every maximal set of pairwise incident elements of % (a
maximal clique in graph-theoretical terms) contains exactly one element
of each type. This construction suggests the definition of geometry as
introduced by J. Tits in the 1950s.

Geometries form a special class of incidence systems. An incidence
system is a quadruple (¥,*,1,1) where ¢ is the set of elements, * is
a binary reflexive symmetric incidence relation on ¢ and ¢ is a type
function which prescribes for every element from ¢ its type which is an
element from the set I of possible types; two different elements of the
same type are never incident. We will usually refer to an incidence system
(%, *,t,1) simply by writing %, assuming that *, ¢t and I are clear from
the context. The number of types in an incidence system (that is the size
of I) is called the rank. Unless stated otherwise, we will always assume
that I = {1,2,..,n} for an incidence system of rank n and write % for
the set of elements of type i in %, that is for £~1(i).

An incidence system ¢ of rank n can be considered (ignoring loops) as
an n-partite graph with parts 41, ..., 4". An incidence system is connected
if it is connected as a graph.

A set ® of pairwise incident elements in an incidence system is called a
fag. In this case |®| and #(®) are the rank and the type of ®, respectively.
If 4 is an incidence system of rank n over the set I of types then n — |P|
and I \ #(®) are the corank and the cotype of ®, respectively. Let ® be a
flag in an incidence system 4. The residual incidence system resg(®) of @
in ¢ (or simply residue) is the quadruple (%, *¢, to,lo) Where

Yo={x|xe€¥ x*yforevery y € ®} \ O,

Io =1\ (D), *p is the restriction of * to % and tg is the restriction of t
to %¢ The notion of residue corresponds to that of link, more common

© Cambridge University Press www.cambridge.org



http://www.cambridge.org/0521413621
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

0521413621 - Geometry of Sporadic Groups I Petersen and Tilde Geometries
A. A.Ivanov

Excerpt

More information

4 Introduction

in topology. For a flag consisting of a single element x its residue will
be denoted by resg(x) rather than by resg({x}). It is easy to see that one
can construct an arbitrary residue inductively, producing at each step the
residue of a single element.

Definition 1.1.1 A geometry is an incidence system (4,*,t,1) for which the
following two conditions hold:

(i) every maximal flag contains exactly one element of each type;

(ii) for every i,j € t(%) the graph on %' U %/ in which two elements
are adjacent if they are incident in 4 is connected, and a similar
condition holds for every residue in 4 of rank at least 2.

The graph on the set of elements of a geometry ¢ in which two distinct
elements are adjacent if they are incident in ¥ is called the incidence graph
of 4. The incidence graphs of geometries of rank »n are characterized as
n-partite graphs with the following properties: (i) every maximal clique
contains exactly one vertex from each part; (ii) the subgraph induced by
any two parts is connected and a similar connectivity condition holds
for every residue of rank at least 2. It is easy to see that a residue of a
geometry is again a geometry.

Let (%41,*1,t1,11) and (93, *2,12,15) be two geometries whose sets of
elements and types are disjoint. The direct sum of %, and %, is a
geometry whose element set is 43 U %,, whose set of types is I1 U I,
whose incidence relation and type function coincide respectively with *;
and t; when restricted to ¢; for i = 1 and 2 and where every element
from %, is incident to every element from ¥,.

The above definitions of residue and direct sum have the following
motivation in the context of geometries of classical groups. Let G be a
classical group with a natural module ¥ and the invariant form ¥. Let
% = 9(G) be the geometry of G as defined above. Let W be an element
of ¢ that is a totally singular subspace of V with respect to W¥. It is
easy to see that res¢(W) is the direct sum of two geometries resg(W)
and res}(W), where the former is the projective geometry of all proper
subspaces of W and the latter is formed by the totally singular subspaces
containing W and can be described as follows. Let

Wt ={v|veV,¥uv,w) =0 forevery we W}

be the orthogonal complement of W. Then W < W+ and ¥ induces
on U = W+/W a non-singular form ¥'. The elements of res}(W) are
the subspaces of U totally singular with respect to ¥’ with the incidence
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relation given by inclusion. So res;(W) is the geometry of the classical
group having U as natural module and ¥’ as invariant form. Certainly
resg (W) or res};(W) or both can be empty and one can easily figure out
when this happens. In any case the observation is that the class of direct
sums of geometries of classical groups is closed under taking residues.
By introducing geometries of classical groups we started considering
the totally isotropic subspaces of their natural modules as abstract el-
ements preserving from their origin in the vector space the incidence
relation and type function. It turns out that in most cases the vector
space can be uniquely reconstructed from the geometry and moreover
the geometry itself to a certain extent is characterized by its local prop-
erties, namely by the structure of residues. The theory and classification
of geometries can be developed quite deeply without making any as-
sumption on their automorphism groups. But our primary interest is in
so-called flag-transitive geometries to be introduced in the next section.

1.2 Morphisms of geometries

Let # and ¥ be geometries (or more generally incidence systems). A
morphism of geometries is a mapping ¢ : # — ¥ of the element set of
A into the element set of ¢ which maps incident pairs of elements onto
incident pairs and preserves the type function. A bijective morphism is
called an isomorphism.

A surjective morphism ¢ : # — % is said to be a covering of 4 if for
every non-empty flag @ of # the restriction of ¢ to the residue res»(®)
is an isomorphism onto resg(¢(®)). In this case 5 is a cover of ¥ and
% is a quotient of . If every covering of ¢ is an isomorphism then ¥
is said to be simply connected. Clearly a morphism is a covering if its
restriction to the residue of every element (considered as a flag of rank 1)
is an isomorphism. If y : G ->%isa covering and G is simply connected,
then vy is the universal covering and @ is the universal cover of 4. The
universal cover of a geometry exists and it is uniquely determined up to
isomorphism. If ¢ : # — ¥ is any covering then there exists a covering
X 4 — # such that 1 is the composition of y and ¢.

A morphism ¢ : # — ¢ of arbitrary incidence systems is called an
s-covering if it is an isomorphism when restricted to every residue of rank
at least s. This means that if ® is a flag whose cotype is less than or
equal to s, then the restriction of ¢ to resy(®) is an isomorphism. An
incidence system, every s-cover of which is an isomorphism, is said to be
s-simply connected. The universal s-cover of a geometry exists in the class
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of incidence systems and it might or might not be a geometry. In the
present work we will mainly use the notion of s-covers either to deal with
concrete morphisms of geometries or to establish s-simple connectedness.
For these purposes we can stay within the class of geometries. It must
be clear that in the case s = n— 1 “s-covering” and “covering” mean the
same thing.

An isomorphism of a geometry onto itself is called an automorphism.
By the definition an isomorphism preserves the types. Sometimes we will
need a more general type of automorphisms which permute types. We
will refer to them as diagram automorphisms.

The set of all automorphisms of a geometry ¥ obviously forms a
group called the automorphism group of ¥4 and denoted by Aut%. An
automorphism group G of ¢ (that is a subgroup of Aut %) is said to be
flag-transitive if any two flags ®; and ®; in ¢ of the same type (that is with
t(®;) = t(®,)) are in the same G-orbit. Clearly an automorphism group is
flag-transitive if and only if it acts transitively on the set of maximal flags
in 4. A geometry ¥ possessing a flag-transitive automorphism group is
called flag-transitive.

A flag-transitive geometry can be described in terms of certain sub-
groups and their cosets in a flag-transitive automorphism group in the
following way. Let ¢ be a geometry of rank n and G be a flag-transitive
automorphism group of 4. Let ® = {xy,xs,...,x,} be a maximal flag in
% where x; is of type i. Let G; = G(x;) be the stabilizer of x; in G.
The subgroups Gy, Ga, ..., G, are called the maximal parabolic subgroups
or just maximal parabolics associated with the action of G on 4. When
talking about n maximal parabolic subgroups associated with an action
on a rank n geometry we will always assume that the elements which
they stabilize form a maximal flag. By the flag-transitivity assumption G
acts transitively on the set 4’ of elements of type i in 4. So there is a
canonical way to identify 4’ with the set of right cosets of G; in G by
associating with y € %' the coset G;h such that x? = y. This coset consists
of all the elements of G which map x; onto y (assuming that action is
on the right). Now with y as above let z be an element of type j which
corresponds to the coset Gjk. By the flag-transitivity assumption y and z
are incident if and only if there is an element g in G which maps the pair
(xi, x;) onto the pair (y, z). It is obvious that g must be in the intersection
G:h N Gjk and each element from the intersection can be taken for g.
Thus y and z are incident if and only if the cosets G;h and Gjk have a
non-empty intersection. Notice that if the intersection is non-empty, it is
a right coset of G; N G;. In this way we arrive at the following.
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1.3 Amalgams 7

Proposition 1.2.1 Let 4 be a geometry of rank n over the set I = {1,2,...,n}
of types and G be a flag-transitive automorphism group of 9. Let ® =
{X1,X2,..,Xn} be a maximal flag in 4 and G; = G(x;) be the stabilizer of
x; in G. Let %(G) be the incidence system whose elements of type i are the
right cosets of G; in G and in which two elements are incident if and only
if the intersection of the corresponding cosets is non-empty. Then %(G) is
a geometry and the mapping

n yHG,h

(where y € ' and x! = y) establishes an isomorphism of 4 onto %(G). O

1.3 Amalgams

Discussions in the previous section and particularly (1.2.1) lead to the
following.

Definition 1.3.1 A (finite) amalgam o/ of rank n is a finite set H such
that for every 1 <i < n there are a subset H; in H and a binary operation
*; defined on H; such that the following conditions hold:
(1) (H;,*;) is a group for 1 <i<n;
(i) H=Ujy, Hi;
(iil) Miy Hi #0;
(iv) if x,ye HiNHj for l<i<j<nthenx*y=x*y.

We will usually write & = {H; | 1 <i < n} for the amalgam & as in
the above definition. Whenever x and y are in the same H; their product
x*;y is defined and it is independent of the choice of i. We will normally
denote this product simply by xy. Since B := (\;_; H; is non-empty,
one can easily see that B contains the identity element of (H;,*;) for
every 1 < i < n. Moreover, all these identity elements must be equal. The
reader may notice that a more common definition of amalgams in terms
of morphisms is essentially equivalent to the above one.

If (G,*) is a group, Hi,..,H, are subgroups of G and *,..,*, are
the restrictions of * to these subgroups, then & = {H; | 1 <i < n} is
an amalgam. This is the most important example of an amalgam, but
at the same time it is not very difficult to construct an example of an
amalgam which is not isomorphic to a family of subgroups of a group.
The amalgam / as above is said to be isomorphic to an amalgam
o' = {H] |1 <i<n} if there is a bijection of H onto H’ which induces
an isomorphism of (H;, *;) onto (H],*)) for every 1 <i < n.
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Definition 1.3.2 A group G is said to be a completion of an amalgam
o ={H;|1<i<n} if there is a mapping ¢ of H into G such that

(1) G is generated by the image of o,
(if) for every 1 < i < n the restriction of ¢ to H; is a group homomor-
phism with respect to *; and the group operation in G.

If o is injective then the completion G is said to be faithful.

Thus an amalgam ./ is isomorphic to a family of subgroups of a
group if and only if .o/ possesses a faithful completion. If G is a faithful
completion of & then we will usually identify <7 and its image in G.

There is a completion U(of) of o known as the universal completion,
of which any completion is a homomorphic image. The group U(s/)
has the following definition in terms of generators and relations: the
generators are all the elements of H; the relations are all the equalities
of the form xyz~! = 1 where x and y are (possibly equal) elements
contained in H; for some i and z = x *; y. It is easy to see that U(«/)
is a completion of .o with respect to the mapping y which sends every
x € H onto the corresponding generator of U(sf). Moreover, if G is an
arbitrary completion of &/ with respect to a mapping ¢ then there is a
unique homomorphism y : U(«/) — G such that ¢ is the composition of
p and y. Finally, &/ possesses a faithful completion if and only if U(«/)
is a faithful completion.

Let G, 4 and the G; be as in (1.2.1). The amalgam & = {G; |1 <i < n}
is called the amalgam of maximal parabolic subgroups in G associated with
the flag ®. The geometry %(G) should be denoted by %(G, .«¢) since its
structure is determined not only by G by also by the amalgam . and by
the embedding of .« in G. We can reformulate (1.2.1) as follows.

Proposition 1.3.3 Let G be a flag-transitive automorphism group of a ge-
ometry 4 of rank n and of = {G; | 1 <i < n} be the amalgam of maximal
parabolic subgroups associated with a maximal flag. Let %(G, /) be the
incidence system whose elements of type i are the right cosets of G; in G
and in which two elements are incident if and only if the intersection of the
corresponding cosets is non-empty. Then 4 and 9(G, &) are isomorphic. O

Notice that by the above proposition the residues of % are uniquely
determined by the amalgam /. That is, resg(x;) is isomorphic to (G, ;)
where o, = {GiNG; |1 <j<n j+i}.

For a subset J = I = {1,2,..,n} let G; = [,.; G; be the elementwise
stabilizer in G of the flag {x; | i € J}. The subgroup G, is a parabolic
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subgroup of rank r where r = |I| —|J|. For i, j € I we write G;; instead of
Gy j1- The parabolic subgroups of rank n— 1 are the maximal parabolics.
The parabolic subgroups of rank 1 are known as minimal parabolics and
the subgroup B = Gy is called the Borel subgroup. We will usually write
P; to denote the minimal parabolic Gp\;; and P;; to denote the rank 2
parabolic Gpg; 3.

1.4 Geometrical amalgams

In view of (1.3.3) the following question naturally arises.

Q. Let G be a group, Gi,Gy,...,G, be subgroups of G and & = {G; |
1 <i < n} be the amalgam formed by these subgroups. Under what
circumstances is the incidence system 4 = %(G, .o/) a geometry and
the natural action of G on ¢ flag-transitive?

Below we discuss the answer to this question as given in [Ti74].

The set ® = {Gy,Gy,..,G,} is a flag in & since each G; contains the
identity element and ® is a maximal flag since for | <i<nandge G
either Gig = G; or GigN G; = 0. A set ¥ = {Gy,hy, .., G hn} is a flag in
% if and only if Gy h; N Gy # ¢ for all j,k with 1 < j,k < m (which
implies particularly that i; # i;). We say that the flag ¥ is standard if
the intersection ﬂ;’;l G;;hj is non-empty and contains an element h, say.
In this case ¥ = {Gj,, .., G, }*, which means that P is the image under h
of a subflag in ®. This shows that every standard flag is contained in a
standard maximal flag and G acts transitively on the set of standard flags
of each type. Clearly G cannot map a standard flag onto a non-standard
one. Thus the necessary and sufficient condition for flag-transitivity of
the natural action of G on ¥ is absence of non-standard flags.

The proof of the following result uses elementary group theory only
(compare Sections 10.1.3 and 10.1.4 in [Pasi94]).

Lemma 1.4.1 The incidence system 9(G, of) does not contain non-standard
flags if and only if the following equivalent conditions hold:

(i) if J, K, L are subsets of I and g, h, [ are elements in G such that
the cosets Gyg, Gxh, GLf have pairwise non-empty intersection, then
G;gNGxkhNGLf #6;

(i) fori,j €l and J < I\ {i,j} if g € Gy and G; N G;g # O then
GiNGiNGig#0. o
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One may notice that, in general, existence of non-standard flags in
%(G, &) depends not only on the structure of <7 but also on the structure
of G.

The connectivity condition in (1.1.1 (ii)) is also easy to express in terms
of parabolic subgroups. By the standard principle the graph on 4 U %/
is connected if and only if G is generated by the subgroups G; and G;.
This gives the following.

Lemma 1.4.2 The incidence system 9(G, /) satisfies the condition (ii) in
(1.1.1) if and only if for every 2-element subset {i,j} = I the subgroups G;
and G; generate G. O

Finally let K be the kernel of the action of G on %(G,.«). 1t is
straightforward that K is the largest subgroup in the Borel subgroup
B =()., Gi, which is normal in G; for all i with 1 <i < n (equivalently,
normal in G). In particular the action of G on %(G, .«/) is faithful if and

only if the Borel subgroup contains no non-identity subgroup normal in
G.

1.5 Universal completions and covers

The fact that the structure of residues in 4(G, <) is determined solely by
=/ plays a crucial r6le in the description of the coverings of %(G, <¢).

Let ¥ be a geometry, G be a flag-transitive automorphism group of
% and &/ = {G; | 1 <i < n} be the amalgam of maximal parabolic
subgroups associated with the action of G on 4. Then on the one hand
% = %(G, «/) and on the other hand G is a faithful completion of .«/. Let
G’ be another faithful completion of o7 and let

0:G -G

be an &/-homomorphism, ie. a homomorphism of G’ onto G whose
restriction to &/ is the identity mapping. As usual we identify .« with its
images in G’ and G. The following result is straightforward.

Lemma 1.5.1 In the above terms the mapping of 4(G’, /) onto 9(G,.o/)
induced by @ is a covering of geometries. m]

In the above construction we could take G’ to be the universal com-
pletion U(«/) of /. The following result of fundamental importance was
proved independently in [Pasi85], [Ti86] and an unpublished manuscript
by S.V. Shpectorov.
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