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The Griffith concept

Most materials show a tendency to fracture when stressed beyond some
critical level. This fact was appreciated well enough by nineteenth century
structural engineers, and to them it must have seemed reasonable to
suppose strength to be a material property. After all, it had long been
established that the stress response of materials within the elastic limit
could be specified completely in terms of characteristic elastic constants.
Thus arose the premise of a “critical applied stress’, and this provided the
basis of the first theories of fracture. The idea of a well-defined stress limit
was (and remains) particularly attractive in engineering design ; one simply
had to ensure that the maximum stress level in a given structural
component did not exceed this limit.

However, as knowledge from structural failures accumulated, the
universal validity of the critical applied stress thesis became more suspect.
The fracture strength of a given material was not, in general, highly
reproducible, in the more brittle materials fluctuating by as much as an
order of magnitude. Changes in test conditions, ¢.g. temperature, chemical
environment, load rate, etc., resulted in further, systematic variations in
strengths. Moreover, different material types appeared to fracture in
radically different ways: for instance, glasses behaved elastically up to the
critical point, there to fail suddenly under the action of a tensile stress
component, while many metallic solids deformed extensively by plastic
flow prior to rupture under shear. The existing theories were simply
incapable of accounting for such disparity in fracture behaviour.

This, then, was the state of the subject in the first years of the present
century. It is easy to see now, in retrospect, that the inadequacy of the
critical stress criterion lay in its empirical nature: for the notion that a solid
should break at a characteristic stress level, however intuitively appealing,
is not based on sound physical principles. There was a need to take a closer
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2 The Griffith concept

look at events within the boundaries of a critically loaded solid. How, for
example, are the applied stresses transmitted to the inner regions where
fracture actually takes place? What is the nature of the fracture mechanism
itself? The answers to such questions were to hold the key to an
understanding of all fracture phenomena.

The breakthrough came in 1920 with a classic paper by A. A. Griffith.
Griffith considered an isolated crack in a solid subjected to an applied
stress, and formulated a criterion for its extension from the fundamental
energy theorems of classical mechanics and thermodynamics. The prin-
ciples laid down in that pioneering work, and the implications drawn
from those principles, effectively foreshadowed the entire field of present-
day fracture mechanics. In our introductory chapter we critically analyse
the contributions of Griffith and some of his contemporaries. This serves
to introduce the reader to many of the basic concepts of fracture theory,
and thus to set the scene for the remainder of the book.

1.1 Stress concentrators

An important precursor to the Griffith study was the stress analysis by
Inglis (1913) of an elliptical cavity in a uniformly stressed plate. His
analysis showed that the local stresses about a sharp notch or corner
could rise to a level several times that of the applied stress. It thus be-
came apparent that even submicroscopic flaws might be potential sources
of weakness in solids. More importantly, the Inglis equations provided
the first real insight into the mechanics of fracture; the limiting case
of an infinitesimally narrow ellipse might be considered to represent a
crack.

Let us summarise briefly the essential results of the Inglis analysis. We
consider in fig. 1.1 a plate containing an elliptical cavity of semi-axes b, c,
subjected to a uniform applied tension o, along the Y-axis. The objective
is to examine the modifying effect of the hole on the distribution of stress
in the solid. If it is assumed that Hooke’s law holds everywhere in the plate,
that the boundary of the hole is stress-free, and that » and ¢ are small in
comparison with the plate dimensions, the problem reduces to a relatively
straightforward exercise in linear elasticity theory. Although the math-
ematical treatment becomes somewhat unwieldy, involving as it does the
use of elliptical coordinates, some basic results of striking simplicity
emerge from the analysis.
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Fig. 1.1. Plate containing elliptical cavity, semi-axes b, ¢, subjected to
uniform applied tension ¢,. C denotes ‘notch tip’.

Beginning with the equation of the ellipse,
xX2[E+y /bR =1, (1.1)
one may readily show the radius of curvature to have a minimum value
p=bc, (b<o (1.2)
at C. It is at C that the greatest concentration of stress occurs:

0.=0,(1+2¢/b)
=0, [1+2(c/p)'"]. (1.3)

For the interesting case b < c¢ this equation reduces to
0/0, = 2c/b = 2c/p)*". (1.4)

The ratio in (1.4) is an elastic stress-concentration factor. It is immediately
evident that this factor can take on values much larger than unity for
narrow holes. We note that the stress concentration depends on the shape
of the hole rather than the size.
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Fig. 1.2. Stress concentration at elliptical cavity, ¢ = 3b. Note that
concentrated stress field is localised within =~ ¢ from tip, highest
gradients within = p.

The variation of the local stresses along the X-axis is also of interest. Fig.
1.2 illustrates the particular case ¢ = 3. The stress g, drops from its
maximum value g, = 7¢, at C and approaches ¢, asymptotically at large
x, while ¢, rises to a sharp peak within a small distance from the stress-free
surface and subsequently drops toward zero with the same tendency as g,,,.
The example of fig. 1.2 reflects the general result that significant
perturbations to the applied stress field occur only within a distance ~ ¢
from the boundary of the hole, with the greatest gradients confined to a
highly localised region of dimension x p surrounding the position of
maximum concentration.

Inglis went on to consider a number of stress-raising configurations, and
concluded that the only geometrical feature that had a marked influence on
the concentrating power was the highly curved region where the stresses
were actually focussed. Thus (1.4) could be used to estimate the stress-
concentration factors of such systems as the surface notch and surface step
in fig. 1.3, with p interpreted as a characteristic radius of curvature and ¢
as a characteristic notch length. A tool was now available for appraising
the potential weakening effect of a wide range of structural irregularities,
including, presumably, a real crack.
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Fig. 1.3. Stress concentration half-systems: surface cavity and surface
step of characteristic length ¢ and notch radius p.

Despite this step forward the fundamental nature of the fracture
mechanism remained obscure. If the Inglis analysis were indeed to be
applicable to a crack system, then why in practice did large cracks tend to
propagate more easily than small ones? Did not such behaviour violate the
size-independence property of the stress-concentration factor? What is the
physical significance of the radius of curvature at the tip of a real crack?
These were some of the obstacles which stood between the Inglis approach
and a fundamental criterion for fracture.

1.2 Griffith energy-balance concept: equilibrium fracture

Griffith’s idea was to model a static crack as a reversible thermodynamic
system. The important elements of the system are defined in fig. 1.4: an
elastic body B containing a plane-crack surface S of length ¢ is subjected to
loads applied at the outer boundary A. Griffith simply sought the
configuration that minimised the total free energy of the system; the crack
would then be in a state of equilibrium, and thus on the verge of extension.

The first step in the treatment is to write down an expression for the total
energy U of the system. To do this we consider the individual energy terms
that are subject to change as the crack is allowed to undergo virtual
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6 The Griffith concept
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Fig. 1.4. Static plane-crack system, showing incremental extension of
crack length ¢ through dc: B, elastic body; S, crack surface; A, applied
loading.

extension. Generally, the system energy associated with crack formation
may be partitioned into mechanical or surface terms. The mechanical
energy itself consists of two terms, U, = U,+U,: U is the strain
potential energy stored in the elastic medium; U, is the potential energy of
the outer applied loading system, expressible as the negative of the work
associated with any displacements of the loading points. The term Uy is the
free energy expended in creating the new crack surfaces. We may therefore

write
U=U,+U,. (1.5

Thermodynamic equilibrium is then attained by balancing the mech-
anical and surface energy terms over a virtual crack extension de (fig. 1.4).
It is not difficult to see that the mechanical energy will generally decrease
as the crack extends (dU,/dc < 0). For if the restraining tractions across
the incremental crack boundary dc were suddenly to relax, the crack walls
would, in the general case, accelerate outward and ultimately come to rest
in a new configuration of lower energy. On the other hand, the surface
energy term will generally increase with crack extension, since cohesive
forces of molecular attraction across dc¢ must be overcome during the
creation of the new fracture surfaces (dUy/dc > 0). Thus the first term in
(1.5) favours crack extension, while the second opposes it. This is the
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Crack in uniform tension 7

Griffith energy-balance concept, a formal statement of which is given by the
equilibrium requirement

dU/de = 0. (1.6)

Here then was a criterion for predicting the fracture behaviour of a
body, firmly rooted in the laws of energy conservation. A crack would
extend or retract reversibly for small displacements from the equilibrium
length, according to whether the left-hand side of (1.6) were negative or
positive. This criterion remains the building block for all brittle fracture
theory.

1.3 Crack in uniform tension

The Griffith concept provided a fundamental starting point for any
fracture problem in which the operative forces could be considered to be
conservative. Griffith sought to confirm his theory by applying it to a real
crack configuration. First he needed an elastic model for a crack, in order
to calculate the energy terms in (1.5). For this he took advantage of the
Inglis analysis, considering the case of an infinitely narrow elliptical cavity
(b0, fig. 1.1) of length 2¢ in a remote, uniform tensile stress field o,.
Then, for experimental verification, he had to find a well-behaved, ‘model’
material, isotropic and closely obeying Hooke’s law at all stresses prior to
fracture. Glass was selected as the most easily accessible material satisfying
these requirements.

In evaluating the mechanical energy of his model crack system Griffith
invoked a result from linear elasticity theory (cf. sect. 2.2), namely that for
any body under constant applied stress during crack formation,

U, = —-2U,, (constantload) (1.7)

so that U, = —U,. The negative sign indicates a mechanical energy
reduction on crack formation. Then from the Inglis solution of the stress
and strain fields the strain energy density is readily computed for each
volume element about the crack. Integrating over dimensions large
compared with the length of the crack then gives, for unit width along the
crack front,

U,=nco%/E’ (1.8)
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Fig. 1.5. Energetics of Griffith crack in uniform tension, plane stress.
Data for glass from Griffith: y = 1.75Jm™%, £ =62GPa, ¢, = 2.63MPa
(chosen to give equilibrium at ¢, = 10 mm).

where E’ identifies with Young’s modulus E in plane stress (‘thin’ plates)
and E/(1 —v?) in plane strain (‘thick’ plates), with v Poisson’s ratio. The
application of additional loading parallel to the crack plane has negligible
effect on the strain energy terms in (1.8). For the surface energy of the crack
system Griffith wrote, again for unit width of front,

U, = 4cy (1.9)
with y the free surface energy per unit area. The total system energy (1.5)
becomes

Ulc) = —mct o2 /E’ +4cy. (1.10)
Fig. 1.5 shows plots of the mechanical energy U,(c), surface energy Us(c),
and total energy U(c). Observe that, according to the Inglis treatment, an
edge crack of length ¢ (limiting case of surface notch, b 0, fig. 1.2) may be
considered to possess very nearly one-half the energy of an internal crack

of length 2c.
The Griffith equilibrium condition (1.6) may now be applied to (1.10).
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Obreimoff’s experiment 9

We thereby calculate the critical conditions at which ‘failure’ occurs,

Oy = O, C = C,, SAY:
0p = (QE'p/mc,)V. (1.11)

As we see from fig. 1.5, or from the negative value of d®*U/dc?, the system
energy is a maximum at equilibrium, so the configuration is unstable. That
is, at o, < o, the crack remains stationary at its original size ¢,; at o, > o,
it propagates spontaneously without limit. Equation (1.11) is the famous
Griffith strength relation.

For experimental confirmation, Griffith prepared glass fracture speci-
mens from thin round tubes and spherical bulbs. Cracks of length
4-23 mm were introduced with a glass cutter and the specimens annealed
prior to testing. The hollow tubes and bulbs were then burst by pumping
in a fluid, and the critical stresses determined from the internal fluid
pressure. As predicted, only the stress component normal to the crack
plane was found to be important; the application of end loads to tubes
containing longitudinal cracks had no detectable effect on the critical
conditions. The results could be represented by the relation

o, cl? = 0.26 MPa m'”

with a scatter = 5%, thus verifying the essential form of g, (¢c,) in (1.11).
If we now take this result, along with Griffith’s measured value of
Young’s modulus, £ = 62 GPa, and insert into (1.11) at plane stress, we
obtain y = 1.75 J m~? as an estimate of the surface energy of glass. Griffith
attempted to substantiate his model by obtaining an independent estimate
of y. He measured the surface tension within the temperature range
1020-1383 K, where the glass flows easily, and extrapolated linearly back
to room temperature to find y = 0.54 J m~2. Considering that even present-
day techniques are barely capable of measuring surface energies of solids
to very much better than a factor of two, this ‘agreement’ between
measured values is an impressive vindication of the Griffith theory.

1.4 Obreimoff’s experiment

Plane cracks in uniform tension represent just one application of the
energy-balance equation (1.6). To emphasise the generality of the Griffith
concept we digress briefly to discuss an important experiment carried out
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10 The Griffith concept

F

Fig. 1.6. Obreimoff’s experiment on mica. Wedge of thickness /
inserted to peel off cleavage flake of thickness ¢ and width unity. In this
configuration both crack origin O and tip C translate with wedge.
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Fig. 1.7. Energetics of Obreimoff crack. Data for mica from

Obreimoff: y = 0.38 J m™2 (air), £ = 200 GPa, h = 0.48 mm, d = 75 um
(chosen to give equilibrium at ¢, = 10 mm).

by Obreimoff (1930) on the cleavage of mica. This second example
provides an interesting contrast to the one treated by Griffith, in that the
equilibrium configuration is stable.

The basic arrangement used by Obreimoff is shown in fig. 1.6. A glass
wedge of thickness /4 is inserted beneath a thin flake of mica attached to a
parent block, and is made to drive a crack along the cleavage plane. In this
case we may determine the energy of the crack system by treating the
cleavage lamina as a freely loaded cantilever, of thickness d and width
unity, built-in at the crack front distant ¢ from the point of application of
the wedge. We note that on allowing the crack to form under constant
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