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1 Basic concepts
1.1 Introduction

Understanding the physical processes that determine the
electrical resistivity of a concentrated metallic alloy is a daunting task
because of the large number of possible contributions that could be
involved. In addition to conduction electron scattering from thermally
induced atomic displacements (which may depend upon concentration
and degree of atomic and magnetic order) there will be other direct
contributions from atomic and magnetic disorder, strain and band
structure effects. The magnitude of such effects will be influenced by the
homogeneity of the microstructure and will depend specifically upon
whether the spatial extent or ‘scale’ of the inhomogeneity is greater or
less than the conduction electron mean free path length.

The purpose of this first chapter is to introduce in a general way the
relationship between the electrical resistivity and conduction electron
scattering and band structure effects. It will be assumed that the reader is
familiar with the fundamental concepts of electron waves in solids which
have been very adequately considered in a variety of other texts
(Ashcroft & Mermin 1976; Coles & Caplin 1976; Harrison 1970:
Kittel 1976; Mott & Jones 1936; Blatt 1968; Ziman 1960, 1969, 1972).
Other topics which are not specifically considered in detail in this text
but which have been considered elsewhere include the electrical
properties of pure metals (Meaden 1966; Wiser 1982; Pawlek & Rogalla
1966; Bass 1984; van Vucht et al. 1985), galvanomagnetic effects (Hurd
1974; Jan 1957), deviations from Matthiessen’s rule (Bass 1972) and the
electrical properties of intermetallic compounds (Gratz & Zuckermann
1982; Gratz 1983; Schreiner et al. 1982; Dugdale 1977, p.279). A
compilation of experimental data relating to the electrical resistivity of
binary metallic alloys and rare-earth intermetallic compounds has
recently been published by Schréder (1983).

1.2 Conduction electron scattering in solids

The electrical resistivity of a solid can be determined by passing
a current i through the specimen of cross-section area a and measuring
the resultant voltage drop v over a distance /. The electrical resistivity p is
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then given by

va
sl

ra
=7 (L.1)
where r is the resistance of the specimen between the potential contacts.
Despite the general acceptance of SI units, the resistivities of metals and
alloys are usually given in units of 4 cm (units are discussed in more
detail in Appendix A). Under the influence of an applied field the
conduction electrons drift through an ionic array, the resistivity being
determined by the rate at which they are scattered from some initial state
®@, into a final state '¥,.. This may be represented in k-space as shown in
Figure 1.1. As evident from the Fermi-Dirac distribution of electron
energies (discussed later in relation to equation (1.23)), only electrons
within an energy range ~ kT about the Fermi surface can increase their
energy by some small amount under the influence of the external field.
However, since the Fermi energy Ep > kyT over the normal range of
temperatures of interest, the vectors k and k' must terminate on the
sharply defined Fermi surface. Note also that in the case of a spherical
Fermi surface the maximum amplitude of the scattering wave vector is
equal to 2kg. This scattering rate will be determined by the strength of
the scattering potential V(r) and, in non-simple metals, the availability
of states into which the electrons can be scattered. In terms of Fermi’s

P

Fig. 1.1. Schematic representation of the scattering of a conduction electron
from an initial state k to a final state k'.
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Conduction electron scattering in solids 3
‘golden rule’ the scattering probability can be written as
2n
Pue=—- [C¥e [ V(D) DD N(E), (12)

where (W,| V(r)|®, ) is the scattering amplitude for transitions between
an initial state @, and a final state ¥, (i.e. the matrix element of the
scattering potential V(r) between the states @, and ¥,.) and N(E;) is the
density of states at the Fermi energy Ep into which the electrons can be
scattered. This latter term arises because of the necessity to have vacant
states ready to accept the scattered electrons. Readers who may be
unfamiliar with the notation in equation (1.2) should not despair.
Examples will be given in the following chapters which show that many
of the quantities required are available in the literature and that, in
certain simplified cases, calculations can be performed on a
programmable calculator or personal computer.

This scattering rate may be approximately described in terms of a
relaxation time T averaged over the Fermi surface. In the simple case of a
spherical Fermi surface (i.e. free conduction electrons) |k'| = |k| = ks and
the scattering probability Py, will depend only upon the angle 0 between
k and k. The relaxation time averaged over the Fermi surface can then
be written as (see Chapter 5)

;1 oc JP(O)(I —cos ) dS
N (13)
% o f P(0)(1—cos 6) sin 6 d6,

where P(6) is now simply the probability of scattering through an angle 8
into the element of area dS on the Fermi surface and the integration
variables are discussed in Appendix B. The term (1 —cos 6) essentially
arises because we are only interested in the total change in momentum
resolved in the direction of the electric field. For example, it we take the x
direction to be in the direction of the applied field, the change in the
contribution to the current from an electron will depend only upon the
change in the x component of its velocity. Since the wavevector k of a free
electron will be in the same direction as its velocity, the change in the
contribution to the current will be proportional to (k. —k’)/k,. (A more
rigorous derivation will be given in Section 5.1.) The geometry of the
problem in three dimensions is shown in Figure 1.2 and leads to the
following relationships:

k,=kg cosa }

1.4
k' =kg(cos a cos 6 +sin a sin 6 cos ¢) (14)
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4 Basic concepts

Averaging over ¢ then gives the required result (k, —k.)/k,=1—cos 0.
This term also has an important physical implication: it indicates that
scattering through large angles is more important in determining the
resistivity than small angle scattering. The significance of this fact will be
emphasised in later chapters.

The final step in determining the resistivity is given by the Drude
formula

m

o (1.5)
where n is the number per unit volume of electrons of mass m and charge
e. It should be emphasised that this simple derivation has been given
mainly to illustrate the link between the scattering process and the
electrical resistivity. The assumptions of free electrons and a uniform
scattering rate over a spherical Fermi surface are clearly severe
restrictions on its applicability. One might expect them to be reasonable
in the case of monovalent metals where the Fermi surface lies entirely
within the first Brillouin zone, but generally the distortion of the Fermi
surface and its intersection with the Brillouin zone boundaries might be
expected to produce deviations from such simple behaviour in most
metals or alloys. Nevertheless, in many concentrated alloys of interest
(particularly those that do not contain transition metals) it appears that
the Fermi surface is still roughly spherical, at least as far as the majority
charge carriers are concerned, so that a ‘nearly’ free electron calculation
can proceed. In other cases one clearly must take into account the effects
of stronger scattering on the band structure of the alloy. These problems
are discussed in more detail in relation to specific alloy systems in the
chapters that follow. At this stage let us continue to use this simple model
to illustrate some more features of the scattering process.

Fig. 1.2. Scattering geometry in three dimensions: ¢ is the angle between the
planes defined by k, k' and k, x axis and « is the angle between k and the x axis.

K
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Conduction electron scattering in solids 5

The degree of periodicity of the ionic array determines the amount of
electron scattering and hence the electrical resistivity. For example, in a
perfectly periodic array (implying an infinite array of identical ions each
at rest on a periodic lattice site) the electrons will suffer only Bragg
scattering. (We treat here the general case where the electron wavelength
is small enough to allow diffraction by the lattice, i.e. the Fermi surface
intersects one or more Brillouin zone boundaries. If this is not the case
there will be no Bragg scattering to worry about.) While the probability
of scattering is then very large at the Bragg wavevectors, the scattering
probability averaged over the Fermi surface is zero. This is because the
Bragg scattering is very sharp and localised to a vanishingly small
fraction of the Fermi surface, the width of the Bragg peaks being
inversely proportional to the number of ions in the array, N. This
behaviour is illustrated in Figure 1.3 which shows schematically the

Fig. 1.3. Bragg scattering: (a) in an ideal diffraction experiment and
(b) superimposed on the Fermi surface. The Brillouin zone boundary is shown
as a dashed line.
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Bragg scattering as it would be measured in a conventional diffraction
experiment (corrected for all other sources of scattering and
experimental broadening) and shows how such scattering would appear
when plotted in a two-dimensional polar form in k-space. This form of
plotting allows visualisation of the scattering superimposed on the
Fermi surface.

The first Brillouin zone is also shown to emphasise the fact that Bragg
diffraction occurs where the Fermi surface intersects the Brillouin zone
boundary, this simply being a geometrical restatement of Bragg’s law. In
real solids the lack of perfect periodicity will give rise to additional
diffuse scattering contributions, in direct analogy to the additional
scattering (e.g. size or strain induced X-ray line broadening, short range
order diffuse scattering and thermal diffuse scattering) observed in a
diffraction experiment, as shown in Figure 1.4, This additional scattering
will lead to a non-zero scattering probability when averaged over the
Fermi surface and hence result in a finite value of the electrical resistivity.

Fig. 1.4. Schematic representation of scattering occurring in real materials
showing the appearance of additional diffuse components.
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Effects of the scale of microstructure 7
1.3 Scattering anisotropy

Figure 1.4 also illustrates another important point. A purely
random, free electron alloy would produce isotropic scattering with the
scattering probability (and hence the relaxation time 7) having the same
value at all points on the Fermi surface. However, as the deviation from
randomness increases, the diffuse scattering will become unevenly
distributed over the Fermi surface, leading to an anisotropic relaxation
time t(k) that varies over the Fermi surface. Similar behaviour will result
if the electron wavefunctions are not spherically symmetric since the
electrons at different places on the non-spherical Fermi surface will have
wavefunctions of different s-, p- and d-like character. Applying equation
(1.3) would then lead to errors since it gives only an average reciprocal
relaxation time {1/t(k)) rather than properly taking into account the
parallel contribution of all electrons to the total current flow. We return
to this important problem later on. In the meantime it is important to
note that an anisotropic relaxation time does not imply a direction
dependence of the resistivity in real space. This is because the resistivity is
determined from an average over all scattering directions (see, e.g.
equation (1.3)) and will thus be isotropic in a cubic system in real space.
In fact it is this very averaging process that makes interpretation of
resistivity data so difficult. Unlike conventional diffraction techniques,
which can map out scattered intensities in two- or three-dimensional
reciprocal space, an electrical resistivity measurement gives only a single
value at any particular temperature and state of disorder. As there is no
means of performing the back-transform from this single point, analysis
of resistivity data must rely on calculation of electron scattering based on
some model of the structure or microstructure concerned.

14 Effects of the scale of microstructure

Itis also important to consider the spatial extent or ‘scale’ of the
atomic or magnetic correlations. This is because there is a characteristic
conduction electron mean free path A defined by

A =T, (1.6)
where vy is the velocity of the electron at the Fermi level. (Note that this
suggests that r may be regarded as a ‘mean free time’.) This quantity is
based on an average scattering probability and should not be simply
interpreted as the real distance between scattering centres (see e.g.
Sondheimer 1952). However, it may be taken as a measure of the
coherence length of the electron wave. Within this context, the
conduction electrons will only be scattered coherently by deviations
from perfect periodicity which occur within a volume ~A3. This is
because scattering centres separated by a distance greater than A do not
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8 Basic concepts

produce coherent scattering, the electron having effectively ‘forgotten’its
phase once it has travelled a distance ~ A. This increases the complexity
of the problem considerably: we need to consider deviations from perfect
periodicity on a scale A, but A is in turn determined by electron
scattering effects, and hence the degree of imperfection! While the ways
around this problem will not be discussed until Chapter 5, such
considerations do aliow for the definition of ‘short’ and ‘long’ range
atomic or magnetic correlations, depending upon whether their spatial
extent (or correlation length) is less than or greater than A respectively.
In fact this raises a point which is often overlooked. Whether a
correlation is described as short or long range depends entirely upon the
coherence length (or time) of the probe being used. For example, ‘long
range order’ in a resistivity study typically implies strong correlations
over volumes larger than 1000 A3, whereas in a Mssbauer experiment
‘long range’ effects (e.g. quadrupole splitting) will result from
correlations over much smaller distances, and may even be due to near
neighbour effects representative of volumes of the order 10 A3 In a
dynamic problem such as spin fluctuation, similar considerations apply.
For example, the lifetime of an excited state in a Mdssbauer experiment
(typically ~1078s) is very much longer than mean free time of a
conduction electron (typically ~107!%s) or a neutron (~ 107 8-
107*25). Thus, while spins in a material may appear to be strongly
correlated (in time) in a Mdssbauer experiment, a neutron diffraction or
electrical resistivity study may lead to a quite different conclusion.
Within the context of this book we will use the terms ‘short range’ and
‘long range’ as they apply to electrical resistivity studies, i.e. according
to whether the correlation length is less than or greater than A, where A
is typically ~10-50 A in concentrated binary alloys. These
considerations are particularly important in the critical region since the
atomic or magnetic correlation length is then rapidly changing with
temperature and will pass from the short range to the long range regime
as the temperature approaches the critical transition temperature from
above. Problems associated with this behaviour are considered in
Chapter 8.

One final point that relates to the significance of A: if a solid is so
strongly disordered that the mean free path becomes comparable with
the conduction electron wavelength (~ 34 A) then one might question
the use of a diffraction model to determine the resistivity. This will occur
when the residual resistivity reaches values over ~ 100uQ cm. However,
a diffraction theory of the resistivity of liquid metals (Ziman 1969)
produces results in reasonable agreement with experiment (even though
the mean free path may be only roughly double the mean interatomic
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spacing) and so there does seem to be some justification for its use. The
particular problems associated with very high resistivity solid alloys and
the adiabatic approximation are also considered in Chapter 8.

1.5 Matthiessen’s rule

In the above discussion, no distinction has been made between
disorder that is frozen into the lattice by quenching or equilibrium
disorder, as would occur in an ordering alloy at high temperatures and at
compositions away from stoichiometry, for example, and disorder that
results from thermal excitation of the lattice. In dilute alloys (see Chapter
2) the scattering from impurity atoms is nearly independent of
temperature and so the total resistivity p,,(7T) at any measuring
temperature T can be written as the sum of two components

Pl T)=po+pu(T), (1.7
where p, is the temperature independent residual (ie. impurity)
resistivity and p,(T) is the resistivity of the pure host material at that
temperature. This is known as Matthiessen’s rule and will only be valid if
the impurity and phonon scattering are independent and if the
relaxation time is isotopic. These assumptions are only partly true in
most systems and there is a large body of work devoted to studying
‘deviations from Matthiessen’s rule’, DMR (see e.g. Bass 1972).

Matthiesen’s rule is often applied to the case of concentrated alloys.
This rather unfair extrapolation of Matthiessen’s original work is then
written as

PalT)=po+p(T) (1.8)
and collects all contributions from scattering due to atomic disorder
{excluding that due to thermally induced lattice displacements) into a
residual resistivity p,, leaving separate the phonon scattering of the
alloy lattice p,(T). The first of these is usually described (with some
confusion) as being ‘temperature independent’. By this it is meant that,
while p, may of course depend indirectly upon temperature if the degree
of atomic disorder changes with temperature, it does not have the
intrinsic temperature dependence of p,(T). For example, an ordering
alloy may be quenched to a temperature low enough to prevent atomic
diffusion and a small change in measuring temperature 7,, would then
produce a change in p,(T) but not p,. Here one needs to be very careful
about the specification of temperature and make a clear distinction
between the measuring temperature T, and the temperature that
characterises the degree of disorder (the quench temperature 1, for
example). At measuring temperatures high enough to allow significant
atomic diffusion, equilibrium may be attained, in which case these two
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temperatures will coincide. In magnetic alloys the dynamics of the spin
system are usually such that the spins remain in thermal equilibrium
down to very low temperatures, in which case it is more usual to express
Pl T) as

Pl T)=po+p(T)+ pu(T), (19)
where p.(T) is the temperature-dependent magnetic contribution
resulting from spin—disorder.

However, in both the concentrated alloy and magnetic cases there are
reasons to expect strong deviations from simple additivity. This is
because the phonon spectrum is likely to depend upon both the
concentration and degree of order, as are the electronic band structure
and relaxation time anisotropy. Equations (1.8) and (1.9) should then
properly include an additional term A(T) to allow for these interactions.
Nevertheless, it is often useful to identify the different contributions
contained in an experimental result. Some aspects of this complicated
problem are discussed in more detail in the following chapters.

1.6 Simple and non-simple metals

We move now to the definition of ‘simple’ and ‘non-simple’
metals. In order to make such a distinction we need to consider formally
the ideas of electronic band structures, Fermi surfaces and density of
states. In metals, all of these are determined by the valence or outer
electron states. The band structure is obtained by solving the
Schrodinger equation to obtain the energy as a function of wavenumber
E(k) (see Chapter 4). The solutions are usually obtained along various

Fig. 1.5. Symmetry lines and points in the Brillouin zone for the fcc (a) and bee
(b) structures.
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