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7
DIAGRAMMATIC METHODS

This chapter is devoted to technicalities related to various expan-
sions already encountered in volume 1, mostly those that derive
from the original lattice formulation of the models, be it high or
low temperature, strong coupling expansions and to some extent
those arising in the guise of Feynman diagrams in the continuous
framework. We shall not try to be exhaustive, but rather illus-
trative, relying on the reader’s interest to investigate in greater
depth some aspects inadequately treated. Nor shall we try to
explore with great sophistication the vast domain of graph the-
ory. There are, however, a number of common features, mostly
of topological nature, which we would like to present as examples
of the diversity of what looks at first sight like straightforward
procedures.

7.1 General Techniques

7.1.1 Definitions and notations

Let a labelled graph G be a collection of v elements from a set
of indices, and ! pairs of such elements with possible duplications
(i.e. multiple links). We shall also interchangeably use the word
diagram instead of graph. This abstract object is represented by
v points (vertices) and [ links. Each vertex is labelled by its index.

The problem under consideration will define a set of admissible
graphs, with a corresponding weight w(G) (a real or complex
number) according to a well-defined set of rules. We wish to find
the sum of weights over all admissible graphs.

Possible constraints on the graphs may be

i) the exclusion constraint, preventing two vertices from carrying
the same index
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Fig. 1 (a) a labelled graph, (b) the corresponding free graph.

ii) sitmplicity when two vertices are joined by at most one link
(the graph in figure 1(a) is not simple).

Take for instance the straightforward high temperature expan-
sion of the Ising partition function

Z=2N Z exp ﬂZa,-oj

{oi=%1} {i5) )
=27V 30 D1+ Z %%
{oi=%1} (i5) ﬂu—l

Expanding the products, keeping terms with a finite power of
B, and averaging over o; = %1, leads to a straightforward high
temperature series encountered in volume 1. The successive
contributions are associated with graphs defined as follows. A
graph has n;; lines joining vertices ¢ and j. Isolated points are
not represented as vertices. Since only even powers of o; have
a nonvanishing unit average, admissible graphs have to obey the
following three rules

i} a line can only join vertices indexed by neighbouring sites, and
we may think of the graph as drawn on the lattice,
ii) an even number of links are incident on a vertex,
iii) two vertices have distinct labels (the exclusion constraint).

Given an admissible graph, its weight is obtained by associating
a factor @ to each line, and dividing by the product H(, ) ij !ie,
the order of the symmetry group of the graph under permuta.tlon
of equivalent links.

We can also write

= (cosh ﬁ)Nd o E H (1 + ;0 tanh §) 2

{oi==%1} (ij)
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7.1 General Techniques 407

which leads for Z/(cosh Bd)N to a different expansion. Admissible
graphs are simple with a factor tanh 8 for each link. Both series
are useful in applications.

Two graphs are isomorphic when a one-to-one correspondence
can be set among vertices and links preserving the incidence
relations. The difference lies therefore in the labels of the vertices.
Isomorphism leads to equivalence classes called free graphs and
denoted G. In a pictorial representation, vertices do not carry
indices anymore (fig. 1(b)). Conventionally, the corresponding
weight w(G) will be the average over the equivalent labelied
graphs. Call number of configurations n(G) the cardinal of the
equivalence class, then

Y w(G;) = n(G)w(G) (3)

Gi€G

This definition is useful whenever the weight of a graph is
independent of the labelling of its vertices. In any case, it allows
one to disentangle the part w(G) that is specific to the model, from
the geometry of the lattice, which yields n(G). The following two
sections will treat these problems separately.

The above definitions can be extended in various ways.

i) Vertices may be of several types.

i) Links may have to be oriented.

iii) A generalization may be envisioned, where instead of dealing
with 0 and 1 dimensional simplices (vertices and links), one
may be required to consider higher dimensional elements (two
dimensional plaquettes in the gauge case).

iv) Indices may be compound ones, and links may have to carry
indices at their extremities.

This list is of course just indicative of possible extensions.

In some applications, the computation of correlations for
instance, a subset of vertices carries fixed indices. Equivalence
classes of such graphs will be called rooted graphs.

Two vertices © and y on G are linked if they can be joined by a
path along links of the graph xz,, 2, 2,,..., z,y. This provides again
an equivalence relation on vertices, and the corresponding classes
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(a) (6) (e) (d)

Fig. 2 (a) a tree (b) a graph with four loops (c) a graph with two articulation
points (d) a multiply connected graph.

define the connected disjoint parts of the graph. A connected
graph has a unique connected part.

A cycle is a closed path of n links, and n vertices, all distinct,
starting and ending at the same vertex. A connected graph
without cycles is a tree (figure 2(a)). The number of loops in
a connected graph is the minimum number of links which, when
removed, leave a tree (figure 2(b)).

An articulation point (figure 2(c)) is such that its omission,
together with incident links, increases the number of connected
parts. It is therefore a vertex which appears on any path linking
certain pairs of vertices. In particular, on a tree, all vertices
but the external ones (joined to the graph by only one link) are
articulation points. A connected graph without articulation points
is a multiply connected graph: any two vertices belong to a cycle
and can therefore be linked by at least two totally distinct paths.

In terms of the following notation

vy, number of vertices with k incident links

v = Y, v, total number of vertices

!, number of links

b, number of loops

¢, number of connected parts
we have the relation

20="Y ku, (4)
k

expressing that each link joins two vertices, thus twice the number
of links is equal to the sum over vertices weighted by the number
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7.1 General Techniques 409

of incident links. On the other hand, Euler’s relation
v+b=c+l (5)

follows by successively suppressing the links until only v isolated
vertices are left. At each stage, the number of loops decreases or
the number of connected parts increases by unity.

i) Compute up to fourth order the Ising partition function on a
d-dimensional hypercubic lattice.

Admissible graphs with at most four links are shown on
figure 3. The corresponding numbers of configurations on
a finite periodic lattice of N sites are respectively Nd, Nd,
Nd(2d—1), $Nd(d — 1) and § Nd(Nd —~ 4d +1). Their weights,
taking into account the symmetry factor, are respectively %ﬂz,
=A%, 164, B%, 1% Summing these contributions yields

Z =1+ 1NdB® + [LNd(6d - 7) + IN?d?] B8* + O(8%)  (6)

To this order, one verifies the extensive character of the free
energy. Indeed

2 = =22 = 1gp? 4 Ld6d - T)B + OB  (T)

is N-independent. The notation F refers to the traditional
thermodynamic definition.

(a) (6 (c) (d) (e)

Fig. 3 Graphs for the Ising model up to order 4.

This example illustrates the convenience of using tanhg
rather than 8 as a small parameter in a high temperature
expansion. Indeed, the corresponding graphs have now to satisfy
the constraint of simplicity. Only the graph of figure 3(d) leads
to a nonvanishing contribution in an expansion up to order
tanh 8%, and we find

Z = (cosh B)V4[1 + 1 Nd(d — 1) tanh® B + O(tanh® 8)]  (8)

Equations (6) and (8) are easily shown to agree.
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410 7 Diagrammatic Methods

This simplification is useful in avoiding the proliferation
of graphs, when investigating the higher order contributions.
Other techniques will be discussed below.

i) Kirchoff’s theorem. The previous definitions allow us to recall
a theorem due to Kirchoff giving in closed form the number of
distinct trees that can be drawn on a connected graph, which
uses the same set of vertices, the so called spanning trees. To
a connected graph G we associate the incidence matrix which
is a topological equivalent of (minus) the Laplacian. Along the
main diagonal, (—A),; is equal to the number of links incident
on vertex i, while (—A);; for distinct i and j is minus the
number of links joining the vertices i and j. Elements in each
line or column of —A add to zero, and therefore det{(—A) is
zero, corresponding to the existence of a unique zero mode,
a constant, since the graph is connected. The claim is that
the. determinant of any principal minor ((—1)¥*7 times the
determinant obtained by deleting the ith line and jth column)
is equal to the number of spanning trees. From the fact that the
graph is connected, there exists a unique vector (the zero mode)
with equal components corresponding to the zero eigenvalue of
—A up to an overall factor. Let M;. be the principal minor of
the element ¢j (including the sign). From

E(-A)iijj = §; det(—A) =0

J

it follows that, for fixed k, all M, are equal, and since the
matrix is symmetric as is —A, all M; are equal to the same
value M. It is therefore sufficient to compute M = M,,, the
determinant of the matrix —A with the first line and column
deleted. Let v denote the number of vertices, and £ > v — 1
the number of links. Define a ! x v matrix L,; where a labels
links, 7 vertices, after giving to each link an arbitrary orientation,

through
+1  if the link @, incident on 1 is oriented off ¢
L,; =4 —1 if the link «, incident on { is oriented towards 4
0 if the link « is not incident on ¢

Then (—A) = LTL. Call L' the matrix L with its first column
deleted, in such a way that

M=detL'"L'= Y, detLl , L}, o

3.0y
{02<"'<au}
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7.1 General Techniques 411

with the sum running over all (v —1) x (v — 1) matrices Lf,, ,.

obtained by selecting v — 1 rows in L' labelled o, < a3 <
«++ < a,. The above equality is a classical identity in the
theory of determinants. Each term in the sum is of the form
(detL!,, . )% and is zero unless the map i — a; assigns to each
vertex i1 = 2,..., v an incident link, in which case the matrix
L,,..a, differs from a permutation matrix only by the fact that
its entries are *1 instead of +1. This has two consequences.
The first is that (detL,, . )? is equal to unity, and the second
that it is in one-to-one correspondence with a spanning tree.
This proves Kirchoff’s theorem. It gives a topological meaning
to the Laplacian which proves useful in percolation and polymer

problems. We shall encounter an application in chapter 11.

7.1.2 Connected graphs and cumulants

The fundamental property of exponentiation relies on the follow-
ing conditions.

i) The empty graph (no vertex, no link) is admissible, with a
weight equal to 1. It has no connected parts (c = 0) and is
therefore not connected (c # 1).

ii) Every union of admissible graphs is admissible.

iii) The weight of a graph factors into contributions from its
connected parts.

If these hypotheses are valid, the sum over all admissible graphs
is equal to the exponential of the sum over connected graphs. The
exclusion constraint is not compatible with condition (ii). The
reader will check on the above example of the S-expansion up to 3%
for the Ising model, that the preceding property is wrong, namely
the free energy is not directly given in terms of contributions from
connected graphs. It is our present task to modify the rules in
order to find a direct expansion for the free energy.

The proof is quite simple. An arbitrary graph is built by
drawing successively and independently its ¢ connected parts
G,,...G.. The order being immaterial, each disconnected graph
is therefore obtained c! times instead of one. Using factorization
of weights and summing on ¢, one finds

§w(9)=§§ > w(G) - w(G,) ©)

c=0 [+ SRTISN Oc
connected
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412 7 Diagrammatic Methods

On the right-hand side, one recognizes the expansion of an
exponential, namely

Y_w(G) = exp ( > w(g)) (10)

g G connected
The above exponential property is crucial in the computation of
extensive quantities as well as in the study of various asymptotic
behaviours, correlation lengths, or boundary effects. Unfortu-
nately the exclusion rule forbids its direct application. We will
now modify these rules, using the cumulant method, to restore
exponentiation.

Assume that another set of rules can be found avoiding the
exclusion constraint. To distinguish them, we represent vertices
of the new graphs by open instead of full circles. A contribution
of a new graph represents part of the former ones, obtained by
identifying vertices with the same labels. If one requires that the
new expansion reproduces the previous results, one obtains a set
of equations, written symbolically as

1 1
ﬁo +—2-Ioo+-ﬁooo+---=o
(1+e)(o—) = o

(14 ¢)( —o~+ —00—) = ~o—
1+ Y +3¢ + Y + g +\>?<()=Y
a+a)( X+ X W+ X p{ +

4 terms 3 terms

LI M0 X

(11)

6 terms

The factor (1 + ) follows from the possibility of identifying as
many isolated vertices as one may wish. In this relation, all
vertices carry the same index, which has been omitted for clarity.

To solve these equations, one must of course define the associ-
ated weights. Take the Ising case as a typical example. In the
standard expansion which enforces the exclusion constraint, we
have

i) a factor 2z, for a vertex with k incident links
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7.1 General Techniques 413

ii) a factor 8 for each link
iii) the product of these factors is divided by the order of the
symmetry group of the graph.

The expansion without the exclusion constraint follows from
similar rules, except for the fact that the factors z, are to be
replaced by cumulants u;. The equations (11) read explicitly

euo - 1 = ZO - 1

U =2/%

uy +ul = 2,/ 2,

uy + 3uyu, +ud = 2, /2,

uy + duzu, + 3ul + 6uyul + ul = 2,/2,

(12)

The cumulants v, are obtained by inverting this system as

Uy = Inz,
z

u, =2
%o

(13)

3
F4 2o 2 Z
u3=_3_3_2__1+2(_1)
% %9 %9

2 2 4
uy = ﬁ—zz-’z—"ﬁ—s(fz-) +122 (-zi) —6(51)
2o 29 %9 2y 2y \Zp %y

To obtain a compact form, write z(h) and u(h) for the generating

functions
2
z(h) = ﬁh" (14)
k=0 "°

u(h) =Y %hk (15)

k=0
The above relations are then simply
u(h) = Inz(h) (16)
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414 7 Diagrammatic Methods

i) Justify in more detail the cumulant procedure and check
equation (16) up to order four against (13).

ii) Rederive the high temperature expansion in the Ising case using
cumulants. The initial rules assume 2z, = 1, 25, = 0, thus

z(h) = coshh (1n
u(h) =Incoshh = 1A% = Lh% 4 ... (18)

The connected graphs are the first four on figure 3 up to
fourth order. Since the exclusion rule no longer applies, the
configuration numbers are modified to Nd, Nd, %N (2d)?,
%Nd(Zd — 1) respectively. These numbers are all proportional
to the number of sites N, because of translational invariance,
and this insures that the free energy is extensive. Since u, =1,
uy = ~2, the new weights are 182, 18%, —1p4, 8%. The weights
are no longer positive, reflecting a similar loss of positivity
of the cumulants. Summation over connected graphs yields
immediately formula (7) and confirms the general property. The
same method applies to the expansion in tanh3. One has to
introduce factors z, which depend on the relative direction of
incident links, and the graphs obtained in this way are no longer
simple, which limits the interest of the method. The choice
between simplicity and connectivity depends on the problem at
hand. For gauge theories, we shall see that simplicity is more
advantageous.

For rooted graphs, the distribution of fixed indices over con-
nected parts leads to equations generalizing (11). Let Z (i, - - - 3,)
(Z is the partition function) denote the sum over all graphs (con-
nected or disconnected) with roots i,,...,%, and (i, ---4;), the
sum over connected graphs using cumulants, one has in general

<i >= <1 >,
Lty D= <Gyl D>+ < 1y > <ty >,
< dyigty >= < iylytg >, + < djly > < i3 >, + < i3 >, < 1y >,
+ < idyiz >, <8 >+ <4y > <1y > <3 >,

(19)

Disconnected graphs factorize partly into connected parts in-
volving no roots, the sum of which yields the factor Z, and partly
into connected rooted graphs which will realize all possible parti-
tions of the set of indices ¢,,..., ¢,. These properties become more
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