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Uniqueness of sporadic groups

MICHAEL ASCHBACHER AND YOAV SEGEV

Initial work on the sporadic finite simple groups falls into one or more of
the following categories:

Discovery

Structure

Existence
Uniqueness

More precisely let H be some group theoretic hypothesis. A group theo-
rist begins to investigate groups G satisfying H and generates information
about the structure of such groups. Typical examples of structural infor-
mation include the group order, the isomorphism type of normalizers of
subgroups of prime order, and perhaps eventually the character table of
G. When a sufficiently large body of self-consistent structural information
has been generated, the group is said to be discovered. This is roughly the
point where the group theoretic community first becomes convinced that
the group exists.

The group actually ezists when there is a proof that there is at least one
group satisfying hypothesis H, while the group is unique when there is a
proof that, up to isomorphism, there is at most one group satisfying H.
More detailed information about the group structure usually comes later
and might include the calculation of the automorphism group and Schur
multiplier of G, an enumeration of the maximal subgroups of G, and the
generation of the modular character tables for G.

As part of the ongoing effort to produce a complete, unified, and accessible
proof of the Classification Theorem, Aschbacher has begun to try to write
down in one place a complete and fairly self-contained proof that the 26
sporadic groups exist and are unique. The plan is to generate at the same
time the basic structural information about each sporadic group necessary
for the Classification. This program dovetails with the Gorenstein-Lyons-
Solomon effort to “revise” the proof of the Classification, since GLS give
themselves the existence, uniqueness, and basic structure of each sporadic
group.

This article concerns itself only with the uniqueness question. The first
part consists of an exposition of machinery developed in [2] to deal with the
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2 Aschbacher & Segev: Uniqueness of Sporadic Groups

uniqueness of some of the sporadic groups. To understand and appreciate
the statement of the main results from [2] it is first necessary to introduce
some graph theoretic and geometric concepts. This is done in section 2.
Then the main theorems from [2] are stated in section 3, where there is also
a very brief discussion of the proof of these results. Section 4 is devoted to
a discussion of how to use the theory in [2] to prove the uniqueness of some
of the larger sporadic groups via their local geometries. The final section
contains some speculation about possible ways to establish the uniqueness
of each of the sporadic groups and the diff iculties involved in such an
undertaking.

A final general remark. It seems to us that any good second generation
treatment of the uniqueness of the sporadic groups must do several things.
It must be simple, clear, and elegant. It should be independent of machine
calculation. Finally it should be as uniform as possible with a minimum of
case analysis. Given our present understanding of the sporadic groups as
26 independent entities, some amount of case analysis seems unavoidable,
but the machinery in [2] gives hope that some differences can be minimized.
However the theory in [2] is in its infancy and much remains to be done
before a truly uniform treatment of the uniqueness of the sporadic groups
exists.

Section 2. Graphs.

In this section A is a graph. Let z be a vertex in A, write A(z) for the
set of vertices distinct from z and adjacent to z in A, z+ = A(z)U{z}, and
A™(z) for the set of vertices at distance n from z. A morphismd : A :— A’
of graphs is a map of vertices such that d(z*) C d(z)* for all z € A.

Let P = P(A) be the set of paths in A. Thus the members of P are
the finite sequences p = z¢ - -z, from A with z;4; € :z;L for all ;. Write
org(p), end(p) for the origin z¢ and end z, of p, respectively. Write pq for
the concatenation of paths p and ¢ such that end(p) = org(g). Write p~?
for the path z,---zo. The path p = ¢ -z, is a circuit if z, = zo.

Define an equivalence relation ~ on P to be P-invariant if the following
four conditions are satisfied:

(PI1) If p ~ ¢ then org(p) = org(q) and end(p) = end(q).

(P12) rr=! ~ org(r) for all r € P.

(PI3) Whenever p ~ p' and ¢ ~ ¢' with end(p) = org(q),
then also pq ~ p'q’.

(PI4) 2 ~ zz for all z € A.

Define the kernel of an equivalence relation ~ on P to be the set ker(~)
of all circuits s such that s ~ org(s). Define a subset S of P to be closed if
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Aschbacher & Segev: Uniqueness of Sporadic Groups 3

it is the kernel of some invariant equivalence relation and define the closure
of a set T of circuits to be the intersection of all closed subsets containing
T. There is an intrinsic characterization of closed sets in section 2 of [2]
which shows the intersection of closed sets is closed, so the closure of T is
well-defined.

Given a set S of circuits of A, define a relation ~g on P by p ~s q if p
and ¢ have the same origin and end and pg~™! € S. It is easy to check that:

(2.1) Let ~ be a P-invariant equivalence relation. Then ~ = ~ger(n). In
particular a set S of circuits of A is closed if and only if ~s is a P-invariant
equivalence relation on P.

Define the basic relation to be the relation ~p,, where Bas is the smallest
closed subset of P. Write = for ~p,,. Notice = is characterized by the
property that if ~ is P-invariant and a = b then a ~ b.

Write [P] for the set of equivalence classes [p] of the basic relation =. For
z € A, write (A, z) for the set of paths p with origin z and write 71(A, z)
for the set of classes [p] € [P] with p a circuit and org(p) = z. As = is
P-invariant, m1(A, z) is a group under the product [p][q] = [pg]. Of course
71(A, ) is the fundamental group of the graph and is free (¢f. Section 5.1
in Serre [12]), but we won’t need this fact.

Define A to be r-generated if the closure of the set of all circuits of length
at most r is the set of all circuits. We say A is triangulable if A is 3-
generated. Intuitively A is triangulable if each circuit is the product of
triangles, and a given path can usually be seen to be in the closure of the
triangles by drawing suitable pictures like those suggested by 2.3 below.
More formally:

(2.2) A is triangulable if and only if for each z € A, m1(A, ) is generated
by classes [rtr~!], r € P, t triangle, org(r) = z, end(r) = org(t).

Define a morphism d : I' — A of graphs to be a local bijection if for all
a€el,
do = d|g1 : ot — d(a)t

is a bijection. Define d to be a fibering if d is a surjective local bijection.
The fibering is connected if its domain I' is connected. The fibering is a
covering if do : @t — d(a)t is an isomorphism for all @ € T'. We say A
is simply connected if A is connected and A possesses no proper connected
coverings.

Caution. In the combinatorial group theoretic literature the term “cov-
ering” is sometimes used as we use the term fibering. However we prefer
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4 Aschbacher & Segev: Uniqueness of Sporadic Groups

to reserve the word covering for a local isomorphism. For example cover-
ings of topological spaces and Tits’ coverings of geometries in [16] are local
isomorphisms.

Given a P-invariant equivalence relation ~, define P/~ = P to be the
set of equivalence classes of ~ and make P into a graph by decreeing that
p is adjacent to G if p ~ gz, where z = end(p) € A(end(q)). Notice that if
p ~ qz then ¢ ~ p - end(q), so our graph is undirected.

Recall £(A, z) denotes the set of paths with origin z. Write £(A,z)/~
for the set of classes p with p € (A, z) and 71(A, =) for the group of all p
with p € (A, z) a circuit.

(2.3) Assume A is connected and let T' be the closure of the set of triangles
of A. Then

(1) end : ¥(A,z)/= — A is a universal connected fibering for A.

(2) end : £(A,z)/~1 — A is a universal connected covering for A.

(3) A is simply connected if and only if A is triangulable.

It will be important for us to know when certain graphs are simply con-
nected. Lemma 2.3.3 says A is simply connected if and only if it is trian-
gulable, and in the graphs we encounter this turns out to be an effective
means for proving simple connectivity.

Remark. Let K = K(A) be the simplicial complex whose vertices are
the complete subgraphs of A. At this conference Tits asked if A is simply
connected if and only if t he topological space | K| of K is simply connected.
The answer is yes. Namely if ~ = ~7 where T is the closure of all triangles,
then #1(A, z) is the edge path group of K (cf. Chapter 3, Section 6 of [14])
so by Theorem 3.6.16 in [14] , #1(A, z) = 7 (| K|, z), the fundamental group
of |K|.

We close the section with a few elementary lemmas from [2] on triangu-
lation. In each case S is a closed subset of P.

(2.4) (1) If pq, pr, and r~'q are circuits with pr, r~'q € S, then pq € S.
(2) Let ai,bi,c; € P,1 < i< n,1<j < n, such that org(a;) = =z,

end(b;) = u, end(a;) = org(b;) = org(c;) = end(ci—1) for 1 < i < n.

Assume a;c,-a;_ll and bi_lc;b,~+1 arein S for1 <i < n. Then a,,b,.bl_lal_l €

S.

Given integers n,m with n > 2, define |m|, = r, where 0 <r <n/2 and
m =r or —r mod n. Then define a circuit p = z¢ - - - £, of length n to be
a n-gon if d(zi,z;) = |[i — j|n, for all 7,7, 0 < ¢,7 < n. Define gon(S) to be
the least r for which there exists an S-nontrivial circuit (i.e. a circuit not

in S) of length r.
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(2.5) Let r = gon(S) and p be an S-nontrivial circuit of length r. Then p
is an r-gon.

To show S consists of all circuits, by 2.5 it suffices to show that for all
r < 2diam(A) + 1, each r-gon is in S.

(2.6) Assume r = gon(S) > 3 and for each z € A and u € A%(z), A(z,u)
is connected. Then gon(S) > 4.

PROOF: By 2.5 we may assume p = g ...Z4 is an S-nontrivial square. By
hypothesis there is a path 1 = y1,... ,yn = 3 in A(zo,z3). Now appeal
to 2.4.2 with a; = zoyi, bi = yiz2, and ¢; = YiYi+1.

Section 3. The Main Theorems of [2].

Define a uniqueness system to be a 4-tuple Y = (G, H,A, Ag) such that
G is an edge transitive group of automorphisms of the undirected graph A,
H < G, Apg is a graph with vertex set H and edge set (z,y)H for some
z€Aandy€ A(z)NzH, and:

(U) G=(H,G;), Gy = (Gzy,H:), and H = (H({z,y}), H:)-

Say Ap is a base for U if the closure of the G-conjugates of circuits in
Apg is the set of all circuits of A.

Define a similarity of uniqueness systems U, to be a pair of isomorphims

a: G, = Gz and ( : H — H such that « = ¢ on H,, H,( = H;,
Geya = Gz,5, and H({z,y})¢ = H({z,§}) for some edges (z,y),(Z,7) of
An,Ag, respectively. We say the similarity is with respect to (z,y),(Z,7) if
we wish to emphasize the role of those edges. The similarity is an equivalence
if there exists ¢ € H with cycle (z,y) such that (b')a = (ba)® for all
be G y.

Define a morphism of uniqueness systems I, to be a gro up homomor-
phism d : G — G such that the restrictions d : H — H and d : G, — G;
are isomorphisms defining a similarity of & with /. Notice d induces a map
d: A — A defined by (zg)d = Z(gd); it turns out this map is a fibering and
induces an isomorphism d: Ay — Ap.

We are now in a position to state the principal results of [2]. The Main
Theorem is:

THEOREM 1. Assume L{,_Z] are equivalent uniqueness systems such that
Apn,Ap are bases for A, A, respectively. ThenU 2 U.
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6 Aschbacher & Segev: Uniqueness of Sporadic Groups

COROLLARY. Assume U and U are equivalent uniqueness systems, A is
triangulable, each triangle of A is G-conjugate to a triangle of Ay, and U
also satisfies these hypotheses. Then U =2 U.

In order to apply Theorem 1 and its Corollary, we need effective means
for verifying the equivalence of uniqueness systems. Several such results are
contained in [2]; we record two of them as typical:

THEOREM 2. Assumel{ andU are similar uniqueness systems and for some

edge (z,y) of A, Aut(Gz,y) N C(Hyzy) = 1. Then U is equivalent to U.

THEOREM 3. Assume U ,U are uniqueness systems satisfying Hypothesis V
below with respect to edges (z,y),(Z,y) and @ : G, — Gz and ¢ : H —
H are isomorphisms such that G ya = éi-,y, H,( = H; = H;a, and
H({z,y})¢ = H({z,y}). Then U and U are similar.

HYPOTHESIS V. The uniqueness system U = (G,H,A,Aq) satisfies the
following four conditions for some edge (z,y) of Ap:

(Vl) Aut(Hz) = AUtAut(H)(Hz)AUtAut(G,)(Hz)-

(V2) Nuyc.)(Hz) < N(GI5)C(Ha).

(V3) Nawy(my(Hz) < N(H . H({z,y})H:)C(Hz).

(V4) Nu,(Hzy) < N, (Gz,y)-

We close this section with a brief discussion of the proof of Theorem 1.
Let I = {1,...,n} be a set of finite order n. Recall an amalgam of rank
n is a family

A=(ajx:Pj—Px:JCKCI)

of group homomorphisms such that for all J C K C L, ajkxak,L = ajL.
There is an obvious notion of morphism of amalgams. A completion
B:A— Gfor Aisafamily § = (8s: P; — G) of group homomorphisms
such that G = (Pyfy: J C I) and for all J C K C I the obvious diagram
comimutes: ag K
Py Pk
Ba Bk
Ne

The completion B : A — G is said to be faithful if each B is an injection.
The free amalgamated product G(A) of A supplies a universal completion
t: A — G(A), and if A possesses a faithful completion then the universal
completion is faithful. Of course isomorphic amalgams have isomorphic
universal completions.
Let Y = (G, H, A, Ap) be a uniqueness system and (z,y) an edge in Ap.
To avoid the trivial case we assume = # y. The amalgam of U is the rank
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3 amalgam A(U) = (ayk : Py — Pg) defined by Pi, = H, Py3 = G,
Pi3 = G({=z,y}), A = H{z,y}), Po = Hy;, P; = G:y, and Py = H,y,
with all maps aj k inclusions.

Observe the inclusion map 3 : A(U) — G is a faithful completion of the
amalgam A(U). Let G(A(U)), ¢ be the universal completion of A(U). Write
G for G(AU)), H for Hu, G; for Gy, etc. Let A be the collinearity graph
of the rank 3 coset geometry I of G on the image of the amalgam under ..
Then G; is indeed the stabilizer of some # € A. Let Aj be the collinearity

graph of the residue of H in " and ¢/ = (G,H,A,Ag). Then

(3.1) U is a uniqueness system equivalent to U, there exists a morphism
d :U — U of uniqueness systems, and if Ay is a base for A thenU = UY.

(3.2) IfU and U are equivalent uniqueness systems then A(U) = A(U).

Notice 3.1 and 3.2 establish Theorem 1. Namely under the hypotheses of
Theorem 1, 3.2 says A(U) = A(U), so that G is also the universal completion
of A(U). Then by 3.1, U = U = U, as desired.

The proofs of the remaining results are more straightforward but also
more technical.

Remark. The proof just sketched shows that under the hypotheses of
Theorem 1, G is the free amalgamated product of H, G, and G({z,y}).
This observation supplies a presentation for G.

Section 4. p-local geometries.
In this section we adopt the terminology of Tits in [16] and assume:

(T0) G is a flag transitive group of automorphisms of a residually con-
nected rank 3 string geometry I" and (z,[,7) is a flag in T".

Consider the following hypotheses:

(T'1) Each pair of distinct collinear points z,y is on a unique line z + y.
(T'2) If z,y € T'y(7) are collinear then z + y € Ty(7).

(I'3) Each triangle of A is incident with a plane.

(T'4) Gx,1 is 2-transitive on I';(1).

(T'5) Gz = (Gz,y,1, Gz,i,n) for  # y € T1(1).
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8 Aschbacher & Segev: Uniqueness of Sporadic Groups

(4.1) Assume (G,T',z,l, ) satisfies hypotheses (I'i) for i = 0,4,5. Define
A to be the collinearity graph of I';, H = G, and Ay the collinearity graph
of the residue of w. Then

(1)U =(G,H,A,Ay) is a uniqueness system.

(2) If hypotheses (T'i), 0 < ¢ < 5, hold then each triangle of A is G-
conjugate to a triangle of Ap.

Section 7 in [2] contains lemmas which make it possible to verify that
suitable truncations of many of the p-local geometries of the sporadic groups
(¢f. [1]) satisfy hypotheses (I'7), 0 < i < 5. Combining this machinery with
the results in section 3 and checking the various hypotheses are satisfied,
we get the following theorem whose proof is not yet written up in preprint
form.

(4.2) Assume G is a sporadic group with p-local geometry T', where either

(a) p=3 and G is Coy, Sz, Mc, or Ly, or

(b) p=2 and G is Ma4 or Jy.

Assume further that (G,T', z,l, ) satisfies Hypothesis (I'0) and a : G —
Gz and ( : G — G5 are isomorphisms with G, ja = Gi,i} Gri( = C_v',-r’i,
and Gy ro = -5,7,. Then G = G if A and A are triangulable.

The p-local geometries for the sporadic groups are discussed in [1]. Other
choices of (G, p) are possible, but the choices in (4.2) are particularly nice
for a number of reasons. For example the pairs (Sz,2) and (Ly,5) are
also possibilities. But in these cases the universal covering of the p-local
geometry I' is an affine building, and hence infinite. As these geometries
satisfy (I'1) and (I'3), coverings of I' induce coverings of the collinearity
graph A, so A is not simply connected. This does not necessarily cause
big problems since one might show that A is n-generated for some n >
3, but it is at least an inconvenience. In the case of (Ly,5), one of the
object stabilizers is not local, so extra effort must be expended to prove the
existence of this stabilizer.

To complete the treatment of the six sporadic groups listed in 4.2 requires
work both at the beginning and end of the problem. To begin one must settle
on a group theoretic hypothesis H with which to characterize G. In each of
the six cases of 4.2, the optimal choice for H is presumably the centralizer
of a 2-central involution. Thus except for M ¢ and Ly, this involves a large
extraspecial subgroup. The next step is to prove the existence of the p-local
geometry and establish the isomorphisms of 4.2. At this point 4.2 reduces
the problem to a check that the collinearity graph A is triangulable. Because
of the novelty of the approach, this last step is at present the most difficult,
even though the graph A is the most well-behaved of those associated to G.
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However there is no reason to believe that techniques can’t be developed to
make the check of triangulability of suitable graphs easy.
In the next section we go into some of these matters in more depth.

Section 5. Speculation.

We close with some speculation on how best to establish the uniqueness
of each of the sporadic groups. But first some general discussion of the
factors which need to be considered.

To begin, given a sporadic group G, we need to settle on a group theoretic
hypothesis H = H(G) with which to characterize G. Probably H will always
be the general structure of the centralizer of an involution. If G possesses
an involution Z such that O2(Cgz(Z2)) is a large extraspecial subgroup then
C(Z) is probably the best choice.

The next step is to decide upon a means for establishing the uniqueness
of groups G satisfying Hypothesis H. Our predisposition is to use a graph
theoretic or geometric approach. Thus in essence we must settle on a large
maximal subgroup G; of G and a self paired orbital of G on G/G; defining
a graph A admitting the action of G as a group of automorphisms with G
the stabilizer of some vertex z € A. If possible, A is the collinearity graph
of some geometry I' preserved by G.

There are several things to think about in choosing A. First A will
probably be easiest to work with if it is highly symmetric; that is A should be
of small diameter and G should be of small rank on A. For example in using
Theorem 1 this will presumably make it easier to prove A is triangulable.

Next it would be best if it is easy to prove the existence of G, starting
from Hypothesis H. If G; is a local subgroup of G then the existence of
G is usually easy. But often the nicest subgroups are not local and hence
are not easy to construct. For example it is probably easier to work with
the 2-local geometry for M4 than to try to prove the existence of an Ma3-
subgroup starting from the structure of a 2-central involution. On the other
hand the only nice graph associated to G may be on the cosets of a nonlocal
subgroup, and hence the construction of this subgroup may be necessary.

Of course eventually we would like to prove the existence of all large
maximal subgroups of G, so why not put in this effort at the start? There
are a number of reasons to avoid such an approach. In the Mj4 example
it is fairly easy to construct some M4 with an Ma,z-subgroup, so if one
can prove uniqueness of M4 by any means then the existence of the Mo3-
subgroup follows painlessly. Also it is worth making the treatment of the
uniqueness of the sporadic groups as simple and self-contained as possible.
Modularization of a very large and complex undertaking is always desirable.

Finally in dealing with 26 sporadic groups, it is an advantage to introduce
as much uniformity as possible and to reduce case analysis to a minimum.
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10 Aschbacher & Segev: Uniqueness of Sporadic Groups

Thus for example as the majority of the sporadic groups possess a large
extraspecial subgroup, it is probably appropriate to emphasize such sub-
groups.

Now some ideas about the optimal approach to the uniqueness question
for each of the sporadic groups. We have already suggested in section 4 that
the groups May, Jy, Mec, Sz, Ly, and Co; are perhaps best viewed as acting
on an appropriate p-local geometry. In [3], we completely implemented this
approach for Jy as a test case. Segev discusses that work elsewhere in these
Proceedings.

We believe He is best represented on a rank 3 geometry with two
Se6/Z3 | Ee4 stabilizers and one S3/L3(4)/E4 stabilizer, with the collinearity
graph defined on the cosets of the final stabilizer. The notion of “uniqueness
system” discussed in section 3 is not quite applicable here, but a very slight
generalization can be applied.

The groups Fi, F,, and F5 are perhaps best represented on a commut-
ing graph on a class of non-2-central involutions. This approach has been
implemented by Griess, Meierfrankenfeld, and Segev in [5] for the Monster,
and by Segev in [10] and [11] for F; and Fs. The results in [2] described
in section 4 grew out of attempts to understand the approach in these pa-
pers, and those results can be used to greatly simplify the treatments in [5],
[10], and [11]. We have written out such a simplification for the Monster
in section 8 of [2] as another test case.

The three Fischer groups are probably best viewed as 3-transposition
groups. Given the 3-transposition theory, the proof of the uniqueness of
the Fischer groups is elegant and easy. Moreover it is worth developing this
theory for a variety of other reasons.

The four small Mathieu groups could be handled by any of a number of
means. There is great room for ingenuity here. For example several years
ago an undergraduate at Caltech named Laura Anderson (now a graduate
student at MIT) produced a simple proof of the uniqueness of Mj,.

Similarly it is not clear which approach is optimal for the three small
Janko groups. Janko proves J; is unique as a 7-dimensional linear group over
GF(7) in [7]. One could also consider the action on an Lj(11)-subgroup.
Hall and Wales show J; is unique in [6] via constructing a Us(3)-subgroup.
Another possibility is to consider the commuting graph on 3-central sub-
groups of order 3. Considering the small size of J3, We see no attractive
way to prove its uniqueness. Frohardt has established uniqueness in [4] via
a trilinear form in characteristic 0 but his proof requires some sweat.

One could approach the uniqueness of Co, via either its 2 or 3-local
geometry. The latter geometry is nicer but it involves the construction of
a Z3/Us(2)-subgroup. The existing proof is due to F. Smith in [13], which
takes this approach.

Similarly Co3 could be approached via its 2 or 5-local geometry, with the
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