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A SURVEY OF RECENT RESULTS ON
PROJECTIVE REPRESENTATIONS OF THE
SYMMETRIC GROUPS

JFHUMPHREYS

University of Liverpool, Liverpool L69 3BX

The basic results on the projective representations of the symmetric groups were
obtained by Schur in 1911, [14]. In recent years, there has been considerable
interest in this area. The aim of this article is to outline some of the recent
developments. The articles by Stembridge [15] and J6zefiak [7] and the
forthcoming book [5], provide introductions to the subject.

1. Preliminaries

Definition. A projective representation of a group G of degree d over a field K
is amap P : G — GL(d,K) such that

(@) P(1g) =14
and

(b) given x and y in G, there is an element a(x,y) in KX (the multiplicative group
of K) such that

P(x) P(y) = a(x,y) P(xy).
When a(x,y) = 1 for all x and y, we say that P is a linear representation of G.

Using the fact that the matrices {P(g) : g € G} are invertible, the fact that P(1g) is
the identity matrix gives:

(Cl)forall gin G,
a(g,l) =1=a(l,g).

Using invertibility again and also associativity of group composition and of matrix
multiplication, (b) gives:

(C2)forallx,yand zin G,

a(xy, 2)a(x,y) = ax, yz)o(y,z).
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A map o : G x G — KX satisfying (C1) and (C2) is a 2-cocycle.

There is an equivalence relation on the set of 2-cocycles: « is equivalent to B if
and only if there is amap 8 : G —» K¥such that forall x,y in G

ax,y) = 8(x)3(y)d(xy) 1B(x,y).

The equivalence classes of 2-cocycles form a group with multiplication

[aB] = [@][B] where

aB(x,y) = a(x,y)B(xy).
This group is usually denoted H2(G,KX). When K is algebraically closed of
characteristic zero, it is known as the Schur multiplier and is often denoted M(G).

Under suitable assumptions of K (for example if K is algebraically closed of
characteristic zero), the group G has a K-representation group. This is a group H
with central subgroup A, isomorphic to H3(G, K*), with H/A isomorphic to G
such that every projective representation of G over K can be "lifted" to a linear
representation of H. In these circumstances, the projective representations of G
may be regarded as linear representations of its representation group.

2. The symmetric groups

For the symmetric group S(n), Schur showed in [14] that the multiplier is cyclic of
order 2 when n 2 4. Since complex representation groups always exist, there is a

group S(n) of order 2n! which is a "double cover" of S(n). Schur provided an

explicit matrix representation of S(n) (the basic representation) as follows.
Consider the complex matrices

A= Q) 5 c-G Y
Then

A2=B2=-; (C2=1I AB=-BA; AC=-CA; BC=-CB.

Now let m be the integer part of (n-1)/2, and define the following 2m x 2m
matrices:

Mom¢r = icem
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and for 1 £k <m,
Mazy.1 = CBMK) @ A ® I8K-1);

Moy = CO¥(m-k) @ B ® I9k-1),

Thus Mf = -Tand MMy = -MgM; j # k). Finally, for 1 <k <n-1, let

k-1\/2 k+14\12
Tx=- (ﬁ) Mg + (T) Mi.

It may be checked that these matrices satisfy the relations

T =1 ( <k <n-1);
(TTis1)3 =-1 (1 <k <n-2)
TTy = -TyT; (1 <j k<n1, k> 1),

and so generate the required representation Py of S(n) with degree 2m. This
representation is irreducible and negative in the sense that the central involution of
S(n) is represented as the negative of the identity matrix. Replacing Ty by -Tx
gives another representation Pywhich is equivalent to Py, if and only if n is odd.

Schur [14], showed that the irreducible negative representations of S(n) can be
indexed by strict partitions of n, that is partitions of n with no repeated parts. This
indexing is not, however, bijective. If A has £ non-zero parts, there are two
irreducible negative representations corresponding to A if n-£ is odd. The two
irreducibles in this case are associated, in that one is obtained from the other by
forming the tensor product with the sign representation. There is a unique
irreducible associated with A when n-2 is even. The basic irreducible negative
representation Py corresponds to the partition (n).

3. The Q-functions

We next give a combinatorial definition of the Q-functions. Let A = (Aq, ..., Ag)
be a strict partition of n with £ non-zero parts. A shifted Young diagram of shape
A is a diagram with £ rows and A; nodes in each row with the first node in row
i+1 being under the second node in row i.
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In order to define the Q-functions, we let P denote the ordered alphabet
{1"<1 <2"<2<3 ..}. The letters 1°, 2/, 3’, ... are marked
(and 1, 2, 3, ... unmarked). The notation lal is used for the unmarked version
of any element a of P.

Definition. A shifted Young tableau of shape A is an assignment of elements of
P 10 the nodes of a shifted Young diagram of shape A such that

(i) the entries are weakly increasing along rows and down columns;

(i) there is at most one occurrence of any given unmarked letter in any given
column,

and
(iii) there is at most one occurrence of any given marked letter in each row.
Example. A shifted Young tableau associated with the partition A =
(7,5,3,2, 1) is

1 1 2 2 2 4 5

2 2 3 4 6

3 5 6
5 7
7

The content of a shifted Young tableau T of shape A is the sequence y =
(Y1, Y2, ...) where 7; is the number of entries of T equal to lil. In the above
example Y= (2,5, 2, 2, 3, 2, 2). For any set {x1, X2, ...} of indeterminates, let

T=xY=x'!x12
X X xl y

Definition. Let A be a strict partition. Define the Q-function Qj = 2 xT,
T
where the sum is over all shifted Young tableaux of shape A.

The Q-functions are in fact symmetric functions, as was clear from the original
definition of Schur. They play a role for projective representations analogous to
that played in the linear representation theory by the Schur functions. The Q-
functions can also be regarded as a special case of the Hall-Littlewood
polynomials. The details of these alternative descriptions and their equivalence
may be found in [5].
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4. Recent advances

(a) In 1988, Nazarov [11] announced a method to construct the matrices
representing the generators of S(n) for the irreducible negative representations
associated with the strict partition A. His method is to define matrices of the
appropriate size, and to check that they do indeed satisfy the relations for the
group S(n). The details of this construction may be found in [12].

(b) Recursive formulae to calculate the value of a given irreducible negative

character at a specific conjugacy class of S(n) in terms of the values of the

characters of S(k), for k < n have been obtained by Morris [9] and Morris-Olsson
[10]. This is analogous to the Murnaghan-Nakayama formula for linear characters
of S(n).

(¢) Itis possible to write the product of Q-functions Q), Qy in the form X f{u Qv,
where the coefficients can be proved to be non-negative integers. In fact

Stembridge [15] has given a combinatorial way to calculate the coefficients fxu,

similar to the Littlewood-Richardson rule for linear representations. The
coefficients are somewhat complicated to describe, and the proof of Stembridge's
result makes use of results of Worley [16].

(d) There is an algebra associated with the negative representations of the groups
S(n), analogous to the well-known graded algebra of Grothendieck groups of
linear representations of S(n). This is obtained as follows. For n 2 4, let T(r)l be

the Grothendieck group of isomorphism classes of finite-dimensional negative
representations of 3(n), and let Tlll be the Grothendieck group of isomorphism

classes of finite-dimensional negative representations of A(n). Let T: be the Z/2-
graded group 'Iﬁ @ Tlll‘ Let L be the ring Z[A]/(A3 - 2A), which is Z/2-graded by

letting LO=Z @ pZ, (where p =22 - 1) and L! =AZ. Then, with appropriate
definitions of T; forvaluesofn<4,3 = GBn>1 T:‘ is a graded L-module. In fact

3 is an algebra (induction product) and coalgebra (restriction) so that 3 is a Hopf

algebra. This algebra approach to the subject is investigated in Hoffman and
Humphreys, [3] and [4].
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(e) The representation theory over modular fields is the subject of investigations
by several authors. When p = 2, the modular representations of S(n) coincide
with those for S(n). The irreducible negative complex characters then provide a
useful class of Brauer characters for S(n) (see Benson [1]).

For odd primes p, the assignment of irreducible complex characters to p-blocks
has been given by Humphreys [6] in answer to a conjecture of Morris. Alternative
proofs of this result have been given by Cabanes [2] and Olsson [13]. Michler
and Olsson [8] have recently shown that the Alperin-McKay conjecture holds in
S(n) for odd primes.
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SOME APPLICATIONS OF GRADED
DIAGRAMS IN COMBINATORIAL GROUP
THEORY

SERGEI V IVANOV & ALEXANDER YU OL'SHANSKII

Moscow State University, Moscow 119899, USSR

This paper is based on four lectures given by the second author at the conference
"Groups - St Andrews 1989", which in turn were based on his book [1] and on
results obtained recently by the authors and others at the higher algebra seminar of
Moscow State University.

1. Diagrams over groups

1.1 van Kampen's lemma. Let G be a group generated by a set {aj, a2, ...}
of generators and a set of defining relations {r;=1,rp =1, ...}, where r1, 13 ...
are words in the group alphabet

@ - (et ).

Of course, any group G can be described by means of such a presentation

G=<apa,.lrn=1Ln=1,.. >

Van Kampen [2] discovered a very simple visual demonstration of the deducibility
of consequences of defining relations. For example, the equality

aZbabl=1
follows from relations
a3=1andabalbl=1

and the deducibility is pictured in Fig. 1. We read one of the defining words by
going around any region and we read the consequence by going along the
boundary of the map (following the inverse edge gives the inverse letter).
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Let us give some definitions.

A map is a finite connected, simply connected planar two-complex. Let

4= {afl, a%l, .}

be a (group) alphabet. A diagram M over & is a map which is equipped with a
labelling function ¢ from the set of oriented edges (one-cells) of M into & with the
property that for any edge e of M

o) = (el
Let G be a group defined by the presentation

G=<%8IR >, (1.1
where R is a set of relators of G.

A diagram M over G (more accurately, over the presentation (1.1)) is a diagram M
over & such that if p is a boundary cycle for a region (= two-cell) of M, then the
word ¢(p) is an element of R.

Of course, the word ¢(p) depends on a choice of an initial vertex on the boundary
of the cell and on the choice of direction (clockwise or counterclockwise).
However, this causes no trouble, because we can assume that the set of defining
words R is symmetrized:

© Cambridge University Press www.cambridge.org



http://www.cambridge.org/0521406692
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

0521406692 - Groups St Andrews 1989, Volume 2
Edited by C. M. Campbell and E. F. Robertson
Excerpt

More information

Ivanov & Ol'shanskii: Applications of graded diagrams 260

@ reR=rleR;
(b) r=uve R =cyclic conjugate vu e R;

(c) re R = r is reduced, i.e. without subwords of the type aa-!, where

ae 9.

The statement of van Kampen's lemma is almost obvious [3].

A relation w = 1 holds in the group G presented by (1.1) if and only if there exists
a diagram M over G with boundary pathp =ej ... eg € M such that
o(e1) ... ¢lem) = w (where = denotes graphical equality).

Moreover, one may assume that M is a reduced diagram. What does this mean?
Let us suppose there exists a pair of regions S3, So with a common edge e such
that for boundary paths p1 = eqi and p2 = eq2, beginning with e, the equation
w1 = wp holds, where the words w1, wy are the labels of p; and p2. Then we
can cut out two regions and sew up the hole (see Fig. 2). And so we can assume
that the diagram M in van Kampen's lemma does not contain such a pair of
contractible regions. In this case, we say that M is a reduced diagram.

Fig. 2
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