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Chapter 0
A Branching-Process Example

(This Chapter is not essential for the remainder of the book. You can start
with Chapter 1 if you wish.)

0.0. Introductory remarks

The purpose of this chapter is threefold: to take something which is probably
well known to you from books such as the immortal Feller (1957) or Ross
(1976), so that you start on familiar ground; to make you start to think
about some of the problems involved in making the elementary treatment
into rigorous mathematics; and to indicate what new results appear if one
applies the somewhat more advanced theory developed in this book. We
stick to one example: a branching process. This is rich enough to show that
the theory has some substance.

0.1. Typical number of children, X

In our model, the number of children of a typical animal (see Notes below
for some interpretations of ‘child’ and ‘animal’) is a random variable X with
values in Z+. We assume that

P(X =0)>0.

We define the generating function f of X as the map f : [0,1] — [0,1],
where

f(0) :=E(6%)= > 6*P(X = k).

kez+

Standard theorems on power series imply that, for 6 € {0,1],
F1(6) = E(X6X7) = > k*T'P(X = k)

and

p=EX)=f(1)=)Y kP(X =k) < co.

1
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2 Chapter 0: A Branching-Process Ezample (0.1)..

Of course, f'(1) is here interpreted as

. fO-fQ) . 1-=f()
bm = = lm =

since f(1) = 1. We assume that

p < oo,

Notes. The first application of branching-process theory was to the question
of survival of family names; and in that context, animal = man, and child
= son.

In another context, ‘animal’ can be ‘neutron’, and ‘child’ of that neu-
tron will signify a neutron released if and when the parent neutron crashes
into a nucleus. Whether or not the associated branching process is super-
critical can be a matter of real importance.

We can often find branching processes embedded in richer structures
and can then use the results of this chapter to start the study of more
interesting things.

For superb accounts of branching processes, see Athreya and Ney (1972),
Harris (1963), Kendall (1966, 1975).

0.2. Size of n't generation, Z,

To be a bit formal: suppose that we are given a doubly infinite sequence
(a) {Xﬁm) tm,r € N}

of independent identically distributed random variables (IID RVs), each
with the same distribution as X:

P(X{™ =) =P(X = k).

The idea is that for n € Z* and r € N, the variable xm represents the
number of children (who will be in the (n+1)** generation) of the r** animal
(if there is one) in the n'® generation. The fundamental rule therefore is
that if Z,, signifies the size of the nt® generation, then

(b) Zngpr = XD g XY,

We assume that Zy = 1, so that (b) gives a full recursive definition of
the sequence (Z,, : m € Z%) from the sequence (a). Our first task is
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..(0.3) Chapter 0: A Branching-Process Ezample S

to calculate the distribution function of Z,, or equivalently to find the
generating function

(c) fa(8) = E(8%") = " 6*P(Z, = k).

0.3. Use of conditional expectations

The first main result is that for n € Z* (and 6 € [0,1])

(a) fat1(0) = fo(£(6)),
so that for each n € Z*, f, is the n-fold composition
(b) fa=fofo...0f.

Note that the 0-fold composition is by convention the identity map fo(6) =
8, in agreement with — indeed, forced by — the fact that Zg = 1.

To prove (a), we use — at the moment in intuitive fashion — the fol-
lowing very special case of the very useful Tower Property of Conditional
Ezpectation:

(c) E(U) = EE(U|V);

to find the expectation of a random variable U, first find the conditional
expectation E(U|V) of U given V, and then find the expectation of that.
We prove the ultimate form of (c) at a later stage.

We apply (c) with U = 6%+ and V = Z,:
E(§%m+1) = EE(8%"+1|Z,).

Now, for k € Z*, the conditional expectation of §2»+1 given that Z, = k
satisfies

(d) E(92n+l ’Zn _ k) _ E(0X£n+l)+,..+xl(un+l)lzn - k).

But Z,, is constructed from variables Xﬁr) with 7 < n, and so Z,, is inde-
pendent of X§"+l), e ,X,E"H). The conditional expectation given Z, = k

in the right-hand term in (d) must therefore agree with the absolute expec-
tation

(e) E(Xi"TY L gXiy,
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4 Chapter 0: A Branching-Process Ezample (0.3)..

But the expression at (e) is a ezpectation of the product of independent
random variables and as part of the family of ‘Independence means multiply’
results, we know that this expectation of a product may be rewritten as the
product of expectations. Since (for every n and r)

E(%™) = £(6),
we have proved that
E(6%+!|Z, = k) = f(8)F,
and this is what it means to say that
E(6%+1|Z,) = f(8)7".

[If V takes only integer values, then when V' = k, the conditional expectation
E(U|V) of U given V is equal to the conditional expectation E(U|V = k) of
U given that V = k. (Sounds reasonable!)] Property (¢) now yields

E6%+ = Ef(6)%",

and, since

E(a?) = fa(a), U
result (a) is proved.
Independence and conditional expectations are two of the main topics
in this course.
0.4. Extinction probability, »
Let 7y := P(Z, = 0). Then 7, = f,(0), so that, by (0.3,b),

(a) Tnt1 = f(7n).
Measure theory confirms our intustion about the extinction probability:
(b) 7 :=P(Z, = 0 for some m) =1 limm,,.

Because f is continuous, it follows from (a) that

(c) ™ = f(r).

The function f is analytic on (0,1), and is non-decreasing and convex (of
non-decreasing slope). Also, f(1) = 1 and f(0) = P(X = 0) > 0. The slope
f'(1) of f at 1is u = E(X). The celebrated pictures opposite now make
the following Theorem obvious.

THEOREM
IfE(X) > 1, then the extinction probability m is the unique root of the

equation m = f(m) which lies strictly between 0 and 1. If E(X) < 1,
then m = 1.
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y = f(z)
2
1
y==z
0

0 T T 1

Case 1: subcritical, p = f'(1) < 1. Clearly, » = 1.

The critical case p = 1 has a similar picture.

Case 2: supercritical, p = f'(1) > 1. Now, 7 < 1.
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6 Chapter 0: A Branching-Process Ezample (0.5)..

0.5. Pause for thought: measure

Now that we have finished revising what introductory courses on probability
theory say about branching-process theory, let us think about why we must
find a more precise language. To be sure, the claim at (0.4,b) that

(a) 7 =Tlmnw,

is intuitively plausible, but how could one prove it? We certainly can-
not prove it at present because we have no means of stating with pure-
mathematical precision what it is supposed to mean. Let us discuss this
further.

Back in Section 0.2, we said ‘Suppose that we are given a doubly infinite
sequence {Xﬁm) : m,r € N} of independent identically distributed random
variables each with the same distribution as X’. What does this mean? A
random variable is a (certain kind of) function on a sample space 2. We
could follow elementary theory in taking €2 to be the set of all outcomes, in
other words, taking € to be the Cartesian product

a=JJz",
T8

the typical element w of §2 being
w= (W :reN,seN),

and then setting X{”(w) = w{”. Now Q is an uncountable set, so that
we are outside the ‘combinatorial’ context which makes sense of 7, in the
elementary theory. Moreover, if one assumes the Axiom of Choice, one
can prove that it is impossible to assign to all subsets of {2 a probability
satisfying the ‘intuitively obvious’ axioms and making the X’s IID RVs
with the correct common distribution. So, we have to know that the set
of w corresponding to the event ‘extinction occurs’ is one to which one can
uniquely assign a probability (which will then provide a definition of «).
Even then, we have to prove (a).

Example. Consider for a moment what is in some ways a bad attempt to
construct a ‘probability theory’. Let C be the class of subsets C of N for
which the ‘density’

p(C):= liTmﬁ{kzlngn;kEC}

exists. Let C, :={1,2,...,n}. Then C, € C and C, T N in the sense that
Cyn © Cpt1,Vn and also | JCrn = N. However, p(C,) = 0,Vn, but p(N) = 1.
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..(0.6) Chapter 0: A Branching-Process Ezample 7

Hence the logic which will allow us correctly to deduce (a) from the
fact that
{Z, = 0} T {extinction occurs}

fails for the (N,C, p) set-up: (N,C, p) is not ‘a probability triple’. |
There are problems. Measure theory resolves them, but provides a huge
bonus in the form of much deeper results such as the Martingale Conver-

gence Theorem which we now take a first look at — at an intuitive level, [
hasten to add.

0.6. Our first martingale
Recall from (0.2,b) that

Zn+1 — X£n+1) U +X(Z7:+1),

where the X (**+1) variables are independent of the values Zy, Z,, ..., Z,. It
is clear from this that

P(Zny1=3lZ0=10,Z1 =t1,...,2Zn = 1) = P(Zpy1 = §|Zp = in),

a result which you will probably recognize as stating that the process Z =
(Zn :n >0) is a Markov chain. We therefore have

E(Zn+1|Z0 =i0, 21 = i1,..., Zn = in) = D jP(Znt1 = j|Zn = in)

J
= E(ZTH-I'Zn = in)y

or, in a condensed and better notation,

(a) E(Zn41120, 21, ..., Z0) = E(Z411Z0).
Of course, it is intuitively obvious that

(b) E(Zn41]2n) = pZn,

because each of the Z, animals in the n'" generation has on average u
children. We can confirm result (b) by differentiating the result

E(67"+1|Z,) = f(6)%"

with respect to 6 and setting 6 = 1.
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8 Chapter 0: A Branching-Process Ezample (0.6)..
Now define
(c) M, = Z,/u", n>0.
Then

E(Mn+1|ZO, Z1y... ,Zn) =M,,

which exactly says that
(d) M is a martingale relative to the Z process.

Given the history of Z up to stage n, the next value M1 of M is on average
what it is now: M is ‘constant on average’ in this very sophisticated sense
of conditional expectation given ‘past’ and ‘present’. The true statement

(e) E(M,)=1, Vn

is of course infinitely cruder.
A statement § is said to be true almost surely (a.s.) or with prob-
ability 1 if (surprise, surprise!)

P(S is true) =1.

Because our martingale M is non-negative (M, > 0,Vn), the Martin-
gale Convergence Theorem implies that it i3 almost surely true that

) My :=lim M, exists.

Note that if My, > 0 for some outcome (which can happen with positive
probability only when pu > 1), then the statement

Znfu" = Mo (a.s.)

is a precise formulation of ‘exponential growth’. A particularly fascinating
question is: suppose that u > 1; what is the behaviour of Z conditional on
the value of Mo?

0.7. Convergence (or not) of expectations

We know that M := lim M,, exists with probability 1, and that E(M,) =1,
Vn. We might be tempted to believe that E(M.) = 1. However, we already
know that if 4 < 1, then, almost surely, the process dies out and M,, is
eventually 0. Hence

(a) if u <1, then Mo =0 (a.s.) and

0 = E(My) # lim E(M,) = 1.
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-(0.8) Chapter 0: A Branching-Process Example 9

This is an excellent example to keep in mind when we come to study
Fatou’s Lemma, valid for any sequence (Y,) of non-negative random vari-
ables:

E(liminf Y,) < liminf E(Y},).

What is ‘going wrong’ at (a) is that (when p < 1) for large n, the chances
are that M, will be large if M, is not 0 and, very roughly speaking, this
large value times its small probability will keep E(Af, ) at 1. See the concrete
examples in Section 0.9.

Of course, it is very important to know when
(b) lmE(-) = E(lim ),

and we do spend quite a considerable time studying this. The best gen-
eral theorems are rarely good enough to get the best results for concrete
problems, as is evidenced by the fact that

(c) E(Mx) =1 if and only if both p > 1 and E(X log X) < oo,
where X is the typical number of children. Of course Olog0 = 0. If p > 1
and E(X log X} = oo, then, even though the process may not die out,
Mo =0, a.s.
0.8. Finding the distribution of A
Since M, — M (a.s.), it is obvious that for A > 0,

exp(—AM,) — exp(—AMo) (a.s.)

Now since each M, > 0, the whole sequence (exp(—AM,)) is bounded
in absolute value by the constant 1, independently of the outcome of our
experiment. The Bounded Convergence Theorem says that we can now
assert what we would wish:

(a) Eexp(—AMy) = imEexp(—AM,).

Since M, = Z,/u™ and E(6%") = fn(6), we have

(b) Eexp(—AM,) = falexp(—A/u™)),

so that, in principle (if very rarely in practice), we can calculate the left-hand
side of (a). However, for a non-negative random variable Y, the distribution

function y — P(Y < y) is completely determined by the map

A= Eexp(—AY) on (0,00).
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10 Chapter 0: A Branching-Process Ezample (0.8)..

Hence, in principle, we can find the distribution of M.

We have seen that the real problem is to calculate the function
L(\) := Eexp(—AMo ).

Using (b), the fact that fo,4+3 = f o fn, and the continuity of L (another
consequence of the Bounded Convergence Theorem), you can immediately
establish the functional equation:

(c) L(Ap) = fF(L(A))-

0.9. Concrete example

This concrete example is just about the only one in which one can calculate
everything explicitly, but, in the way of mathematics, it is useful in many
contexts.

We take the ‘typical number of children’ X to have a geometric distri-
bution:

(a) P(X =k)=p¢* (keZT),

where
O<p<l, g¢g:=1-p.

Then, as you can easily check,

(b) [0) =1t w=

A

and
r=4Pl0 ifg>p,
1 if ¢ <p.

To calculate fo fo...o f, we use a device familiar from the geometry
of the upper half-plane. If
G = (911 912)
g21  g22

is a non-singular 2 x 2 matrix, define the fractional linear transformation:

9110 + g12
C G(8) = —— 2=,
(c) ® 9219 + g22
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