This book presents a study of various problems related to arrangements of lines, segments, or curves in the plane. It starts with a discussion of Davenport-Schinzel sequences, which have been applied to obtain optimal or almost-optimal bounds for numerous combinatorial as well as algorithmic problems involving arrangements. The main result here establishes almost tight bounds on the maximal length of (n,s)-Davenport-Schinzel sequences.

The second problem studied is: given a collection of "red" Jordan arcs and another of "blue" arcs, determine whether any red arc intersects any blue arc. Some fast deterministic algorithms are presented, along with applications to many other problems, including collision detection.

Next, a partitioning algorithm is presented that improves the time complexity of a variety of problems involving lines or segments in the plane. Several applications are discussed, most importantly a fast deterministic algorithm to construct a family of spanning trees with low stabbing number. This is shown to be a versatile tool that provides efficient algorithms for a variety of query-type problems, including ray shooting in an arrangement of segments, polygon containment and implicit hidden surface removal.

Researchers in computational and combinatorial geometry should find much to interest them in this book.

Intersection and Decomposition Algorithms for Planar Arrangements

Intersection and Decomposition Algorithms for Planar Arrangements

PANKAJ K. AGARWAL

Department of Computer Science, Duke University

CAMBRIDGE UNIVERSITY PRESS

Cambridge New York Port Chester Melbourne Sydney CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Mexico City

Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9780521404464

© Cambridge University Press 1991

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

> First published 1991 First paperback edition 2010

A catalogue record for this publication is available from the British Library

ISBN 978-0-521-40446-4 Hardback ISBN 978-0-521-16847-2 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. Information regarding prices, travel timetables, and other factual information given in this work is correct at the time of first printing but Cambridge University Press does not guarantee the accuracy of such information thereafter.

PREFACE

Computational geometry emerged as a scientific discipline about fifteen years back. It has developed very rapidly during the last few years because of its applications in areas such as robotics, computer graphics, VLSI, CAD, solid modeling, etc. Although it primarily concerns designing efficient algorithms for geometric problems, the algorithmic and combinatorial questions are so interwined in many problems that it is almost impossible to separate one from another. One such area in computational geometry is *arrangements* of lines or curves in the plane, or of hyperplanes and surfaces in higher dimensions. Recently arrangements have received a considerable amount of attention because several fundamental geometric problems can be formulated in terms of arrangements.

This book, based on the author's PhD thesis, studies several algorithmic as well as combinatorial problems involving arrangements of arcs in the plane. The first problem studied here concerns obtaining sharp bounds on the maximum length of *Davenport-Schinzel sequences*. These sequences have been applied to numerous combinatorial as well as algorithmic problems involving arrangements of arcs.

In Chapter 3 we study the *red-blue intersection* problem and its applications to other problems, including collision detection.

Chapter 4 and 5 discuss the following decomposition problem: Given a set of n lines in the plane and a parameter $r \leq n$, decompose the plane into $O(r^2)$ triangles, each of which intersects at most n/r original lines. Chapter 4 presents an efficient algorithm for computing such a partitioning. The application of this algorithm to various other problems is the topic of Chapter 5. The significance of this partitioning algorithm is evident from the problems discussed in Chapter 5.

Finally, in Chapter 6 we show that a spanning tree of a set of points in the plane with the property that each line intersects only few edges of the tree is a versatile tool and that it provides fast procedures for a variety of query-type problems including ray shooting and implicit hidden surface removal.

The open problems mentioned at the end of each chapter suggest further research problems in these areas.

I would like to express my deep sense of gratitude to my thesis advisor

Micha Sharir. It is difficult to imagine how I would have completed this work without his guidance, encouragement and unwavering support. I would like to thank him for reading various versions of the manuscript. Thanks are also due to Boris Aronov, Bernard Chazelle, Jiří Matoušek, Ricky Pollack, and two anonymous referees for several useful comments, and to Lauren Cowles for a careful reading of the manuscript.

Pankaj K. Agarwal

Contents

1	Intr	oducti	on	1
	1.1	Arran	gements	2
	1.2	Daven	port-Schinzel Sequences	8
	1.3	Rando	om Sampling and Deterministic Partitioning	11
	1.4	Spann	ing Trees with Low Stabbing Number	14
2	Dav	enpor	t-Schinzel Sequences	17
	2.1	Introd	uction	17
	2.2	The U	pper Bound for $\lambda_4(n)$	20
		2.2.1	Decomposition of DS-sequences into chains	20
		2.2.2	Properties of Ackermann's and related functions	22
		2.2.3	Upper bound for $\Psi_4(m,n)$	28
	2.3	The L	ower Bound for $\lambda_4(n)$	34
		2.3.1	The functions $F_k(m)$ and their properties $\ldots \ldots$	34
		2.3.2	The sequence $S_k(m)$	37
	2.4	The U	pper Bounds for $\lambda_s(n)$	42
		2.4.1	Upper bounds for $\Psi_s(m, n)$	44
	2.5	The L	ower Bounds for $\lambda_s(n)$	54
		2.5.1	The functions $F_k^s(m), N_k^s(m), F_k^\omega(m)$ and their prop-	
			erties	55
		2.5.2	The sequences $S_k^s(m)$	62
3	Rec	l-blue	Intersection Detection Algorithms	69

Cambridge University Press
978-0-521-40446-4 - Intersection and Decomposition Algorithms for Planar Arrangements
Pankaj K. Agarwal
Frontmatter
More information

xii

	3.1	Introduction	9	
	3.2	Intersection between a Simple Polygon and Arcs		
	3.3	Applications to Collision Detection and Motion Planning 7	6	
		3.3.1 The algorithm	0	
		3.3.2 Applications to motion planning 8	2	
	3.4	Red-blue Intersection Detection in General 8	8	
		3.4.1 Deterministic algorithm	9	
		3.4.2 Relation between many faces and red-blue intersection		
		detection	6	
	3.5	Further Applications	9	
	3.6	Discussion and Open Problems 10	3	
4	Par	titioning Arrangements of Lines 10	5	
	4.1	Introduction	5	
	4.2	Geometric Preliminaries	9	
	4.3	Selecting the κ^{th} Leftmost Intersection Point $\ldots \ldots \ldots$	3	
		4.3.1 Counting intersection points inside a convex quadri-		
		lateral \ldots \ldots 11	3	
		4.3.2 Computing the κ^{th} leftmost intersection	4	
	4.4	Partitioning a Convex Quadrilateral	6	
		4.4.1 A special case	7	
		4.4.2 General algorithm 12	2	
		4.4.3 Analysis of the algorithm 12	6	
	4.5	Partitioning the Plane into Quadrilaterals	5	
	4.6	Constructing Approximate Levels	9	
	4.7	Coping with Degenerate Cases	6	
	4.8	Discussion and Open Problems	0	
5	Арр	plications of the Partitioning Algorithm 15	3	
	5.1	Introduction	3	
	5.2	Computing or Detecting Incidences between Points and Lines 15	7	
	5.3	Computing Many Faces in Arrangements of Lines 16	0	

Cambridge University Press	
978-0-521-40446-4 - Intersection and Decomposition Algorithms for Planar Arrangemen	ts
Pankaj K. Agarwal	
Frontmatter	
More information	

				xiii
	5.4	Compu	nting Many Faces in Arrangements of Segments	167
	5.5	Counti	ng Segment Intersections	173
	5.6	Counti	ng and Reporting Red-blue Intersections	176
	5.7	Batche	d Implicit Point Location	181
		5.7.1	Polygon containment problem — batched version	185
		5.7.2	Implicit hidden surface removal — batched version	186
	5.8	Approx	ximate Half-plane Range Queries	188
	5.9	Compu	iting Spanning Trees with Low Stabbing Number	189
	5.10	Space	Query-time Tradeoff in Triangle Range Search	197
	5.11	Overla	pping Planar Maps	204
	5.12	Discus	sion and Open Problems	209
	-			
6	Spa	nning '	Trees with Low Stabbing Number	211
	6.1	Introdu		211
	6.2	Spanni	ing Trees of Low Stabbing Number	214
	6.3	Ray St	nooting among Non-intersecting Segments	216
	6.4	Tradeo	off between Space and Query Time	224
		6.4.1	The case of quadratic storage	225
		6.4.2		226
	~ ~	6.4.3	Coping with degenerate cases	230
	6.5	Report	ing All Intersections	232
	6.6	Ray St	nooting in General Arrangements of Segments	234
		6.6.1	Preprocessing the segments	235
		6.6.2	Answering a query	238
		6.6.3	Analysis of the algorithm	239
		6.6.4	Tradeoff between space and query time	243
	6.7	Implici	t Point Location — Preprocessing Version	247
	6.8	Other		249
		6.8.1	Polygon containment problem — preprocessing version	250
		6.8.2	Implicit hidden surface removal — preprocessing version	1254
		6.8.3	Polygon placement problem	255

Cambridge University Press
978-0-521-40446-4 - Intersection and Decomposition Algorithms for Planar Arrangements
Pankaj K. Agarwal
Frontmatter
More information

xiv		
6.9	Discussion and Open Problems	
Biblio	graphy	259
Index	of Symbols	273
Index	of Keywords	275

List of Figures

1.1	An arrangement of lines 3	
1.2	A non-convex face in an arrangement of segments	
1.3	Lower envelope of a set of curves	
3.1	Arcs intersecting a polygon 72	
3.2	Illustration for Lemma 3.7	
3.3	Area swept by a wall	!
3.4	Right angle corridor	
3.5	General corridors	
3.6	Illustration for Lemma 3.18 91	
3.7	Illustration for Lemma 3.24	
3.8	Detecting intersection between billiards balls 100	1
4.1	Exact, approximate and simplified levels	
4.1 4.2	Exact, approximate and simplified levels	
4.1 4.2 4.3	Exact, approximate and simplified levels	
4.1 4.2 4.3 4.4	Exact, approximate and simplified levels109Lines intersecting a convex quadrilateral111A segment and its dual112A green line and its endpoints114	
4.1 4.2 4.3 4.4 4.5	Exact, approximate and simplified levels 109 Lines intersecting a convex quadrilateral 111 A segment and its dual 112 A green line and its endpoints 114 Partitioning Q into subquadrilaterals 118	
4.1 4.2 4.3 4.4 4.5 4.6	Exact, approximate and simplified levels 109 Lines intersecting a convex quadrilateral 111 A segment and its dual 112 A green line and its endpoints 114 Partitioning Q into subquadrilaterals 118 Cells intersecting a line 120	
 4.1 4.2 4.3 4.4 4.5 4.6 4.7 	Exact, approximate and simplified levels 109 Lines intersecting a convex quadrilateral 111 A segment and its dual 112 A green line and its endpoints 114 Partitioning Q into subquadrilaterals 118 Cells intersecting a line 120 Red, green and blue pseudo edges 123	
 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 	Exact, approximate and simplified levels 109 Lines intersecting a convex quadrilateral 111 A segment and its dual 112 A green line and its endpoints 114 Partitioning Q into subquadrilaterals 118 Cells intersecting a line 120 Red, green and blue pseudo edges 123 Internal and boundary cells 124	
 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 	Exact, approximate and simplified levels 109 Lines intersecting a convex quadrilateral 111 A segment and its dual 112 A green line and its endpoints 114 Partitioning Q into subquadrilaterals 118 Cells intersecting a line 123 Internal and boundary cells 124 Cells with seven or eight edges 125	
 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 	Exact, approximate and simplified levels 109 Lines intersecting a convex quadrilateral 111 A segment and its dual 112 A green line and its endpoints 114 Partitioning Q into subquadrilaterals 118 Cells intersecting a line 120 Red, green and blue pseudo edges 123 Internal and boundary cells 124 Cells with seven or eight edges 125 Charging of a red-green intersection point 127	

Cambridge University Press
978-0-521-40446-4 - Intersection and Decomposition Algorithms for Planar Arrangements
Pankaj K. Agarwal
Frontmatter
More information

xvi

4.12	Illustration for Lemma 4.17 and Lemma 4.18
4.13	Charging of line cell crossings
4.14	A triangle intersecting two levels $\frac{n}{r}$ apart
4.15	Illustration for Lemma 4.30
4.16	Triangulation induced by approximate levels
4.17	Illustration of Lemma 4.35
4.18	Cells in degenerate cases
r 1	Te -:]
5.1	Incidence counting problem
5.2	A face in an arrangement of lines, and its dual
5.3	An arrangement and its dual graph
5.4	Constructing a spanning path
5.5	Spanning tree and a spanning path of a set of points 163
5.6	Zone of a triangle
5.7	Binary tree formed on triangles
5.8	A long segment and its endpoints
5.9	Intersections between long segments
5.10	Spanning path of a set of points
5.11	Maximal matching of endpoints
5.12	A triangle and its dual
5.13	Slanted range searching
5.14	Two types of triangles 203
5.15	Long blue segments
5.16	Planar map formed by long blue segments
6.1	Ray shooting in arrangements of segments
6.2	Binary tree formed on a spanning path
6.3	Spanning paths on endpoints of segments 217
6.4	Two sided segments 217
6.5	Two different orderings of a pair of segments 219
6.6	Illustration for Lemma 6.7
6.7	Segments e_h , e_u and e_{ϕ_p}

Cambridge University Press	
978-0-521-40446-4 - Intersection and Decomposition Algorithms for Planar Arrangement	\mathbf{ts}
Pankaj K. Agarwal	
Frontmatter	
More information	

6.8	Convex hull of right endpoints of a set of segments \ldots
6.9	Handling degenerate cases
6.10	Partitioning segments into different subsets 235
6.11	Zone of a triangle for a set of segments
6.12	Zone of a triangle for long segments
6.13	Polygon formed by the zone of long segments $\ . \ . \ . \ . \ . \ . \ 239$
6.14	Polygon containment problem
6.15	Dividing segments into two subsets

xvii