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removal would result in the creation of smoothly polished surfaces. Here, film

removal is envisaged to happen when the oxide films are only a few tens of nano-

metres thick. Essentially, this process is identical to that conceived for Type

I corrosion-wear that affects uncoated and certain coated stainless steels when

immersed in aqueous saline solutions and subjected to sliding contact with an inert

material (Dearnley&Aldrich-Smith, 2004 – see Fig. 6.44 inChapter 6). In the case of

piston ring/cylinder liner contacts, the ability to resist polishing due to CW is

a reflection of the adhesive strength of the oxide film to its parent coating. One

possible explanation for some of the results shown in Fig. 8.20b is that Cr-N-O films

formed above CrN coatings are more tenaciously bonded than Cr-B-O films formed

above Cr-33B and Cr-26B coatings. Similarly, W-B-O films are weakly attached to

W-25B coatings. Notably, the Cr-33B coating – although harder than the Cr-26B

coating (Fig. 8.20a) – was worn to a greater extent (Fig. 8.20b). This suggests that

a higher B content in a Cr-B-O film results in a more weakly attached oxide film,

resulting in a greater surface material loss.

8.3 Surface Engineering of Valve Lifters (Cam-Followers)

8.3.1 Background

Valve lifter (cam-follower) and cam shaft materials have not received very much

change in the past thirty years. The review of Becker (2004) indicates no changes in

the principal materials used for these devices when compared to those highlighted in

publications during the 1980s (Eyre & Crawley, 1980; Eyre, 1984). The summary

given in Table 8.3 is still relevant at the time of writing (circa 2015); this shows a high

reliance on cast irons and steels for valve lifters and cams. Here, surface engineering

is required to realise a combination of high fatigue endurance, fatigue strength,

rolling contact fatigue (RCF) pitting resistance, micro-abrasion wear and scuffing

(material transfer) resistance. Scuffing is minimised by the phosphating (with man-

ganese phosphate) of steel or cast iron valve lifters or by using micro-cracked Cr

electroplating (similar to that shown in Fig. 8.4a). The latter procedures enable oil

retention and spreading, which greatly aid boundary lubrication. Formulated oils

containing anti-wear additives, like ZDDP (Bec et al, 1999; Barnes et al, 2001;

Spikes, 2004; de Barros Bouchet et al, 2005), although widely used to aid an anti-

scuffing character, can also initiate premature rolling contact fatigue pitting (Eyre&

Crawley, 1980). Adverse pinholing of DLC coatings (presently being introduced for

valve lifter applications) may also be triggered by oil additives (Section 8.3.3).

Cams are not generally coated but are frequently hardened by induction or

flame hardening (to form a martensitic case) or may be nitrided (refer to Chapters 3

& 5). In these situations, the aim is to increase RCF pitting resistance and enhance

rotation bending fatigue endurance and strength. When micro-abrasion wear resis-

tance (MAWR) is a concern (Table 8.3), as in some diesel engine applications where

abrasive soot particles may ingress the lubricating oil, the cam ‘nose’ is subjected to

rapid cooling (‘chill casting’) during its manufacture; this forms a durable, hard
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(Hv~1200 kg/mm2) surface zone of cementite (Fe3C). However, its brittle nature has

the potential to reduce rotation bending fatigue endurance and strength.

A major factor in materials selection for cams and valve lifters remains produc-

tion costs. These are lowest of all for castings in cast iron (Birch, 2009), despite

valiant efforts by enterprising manufacturers to utilise alternative near-net-shape

production routes like powder technology (for modular steel cams) –Becker (2004).

Other innovations to develop durable silicon nitride ceramic valve lifters, despite

showing promise (Kano & Tanimoto, 1991a,b), were not subsequently exploited for

mass production motor vehicle use due to their relatively high production and raw

material costs compared to those of steels and cast irons. Nowadays there are other

concerns. The use of phosphating (Fig. 5.13) and electroplating (Fig. 4.18) technol-

ogies (specified for valve lifters – Table 8.3) is under legislative threat due to

perceived negative environmental impact concerns. This has led to efforts to replace

these processes with environmentally friendly techniques like PVD or PACVD.

The latter are used for production of DLC (diamond-like carbon), CrN and Cr2

Table 8.3 Common camshaft and valve lifter (cam follower) materials developed in the 1980s which

remain in use today (circa 2015). Based on data and comments of Eyre & Crawley, 1980.

Camshaft materials Purpose of treatment Valve lifter materials Purpose of treatment

Chilled cast iron (cam

nose)

‡MAWR Chilled cast iron ‡MAWR, scuffing

resistance

Induction-hardened SG-

iron

‡MAWR; scuffing

resistance, *RCF pitting

reduction, increased
¥RBFE

Induction-hardened SG-

iron

‡MAWR, scuffing

resistance, *RCF pitting

reduction

Induction-hardened alloy

cast iron

‡MAWR; scuffing

resistance, *RCF pitting

reduction, increased
¥RBFE

Induction-hardened

pearlitic malleable cast

iron

‡MAWR; *RCF pitting

reduction, scuffing

resistance, increased
¥RBFE

Hard (micro-cracked)

chromium-plated steels

or cast iron

‡MAWR, scuffing

resistance and oil

spreading

Forged and carburised

0.1%C steel

‡MAWR; *RCF pitting

reduction, scuffing

resistance, increased
¥RBFE.

Carbonitrided 1.5% Mn-

Mo steel

‡MAWR, scuffing

resistance, *RCF pitting

reduction

Forged and induction-

hardened 0.3%C steel

‡MAWR; *RCF pitting

reduction, scuffing

resistance, increased
¥RBFE

Mn phosphated [(Mn3
(PO4)2] steel

Scuffing resistance, oil

spreading and running-

in assistance

Gas nitrided steel** Scuffing and *RCF pitting

reduction

‡ MAWR= micro-abrasion wear resistance
* RCF=rolling contact fatigue
¥ RBFE=rotation-bending fatigue endurance and strength
** Supersedes the original salt bath nitriding (Tufftriding) method quoted by Eyre & Crawley, 1980.
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N (chromium 2 nitride) coatings. The potential of the latter for use in oil-lubricated

operating environments, relevant to the valve lifter/cam-follower situations, is now

discussed in some detail.

The operational range of lubrication regimes for a cam and cam lifter system is

narrower than that for piston ring/cylinder liner (Fig. 8.2), and typical friction levels

(Taylor, 1991) are very much lower (µ<0.01) due to the opposing surfaces experien-

cing a range of contact conditions from pure sliding, to a mix of sliding and rolling, to

pure rolling. The increasing use of lower-viscosity oils brought about by changing

from mineral or semi-synthetic oils to fully synthetic oils (to attain better fuel

economy) – combined with changes in oil additive packages to reduce unwanted

negative environmental impact element emissions (like Zn and P) – has brought

about more demanding operating conditions for the cam/valve lifter system. Such

changes have caused a higher probability of inter-material contact, which has led to

adverse component wear. Accordingly, there has been significant interest in evalu-

ating the prospect of increasing component life through the application of surface

treatments to cams or valve lifter surfaces, including efforts to develop diamond-like

carbon coatings (FordMotor Company, 1993a,b; Sjöström&Wikström, 2001), which

has culminated in at least one Japanese manufacturer applying such coatings to the

valve lifter components of one mass-production engine.

8.3.2 Experimental Aspects

The assessment of the suitability of coating materials for cam/valve lifter systems is

both time consuming and costly to carry out in fully instrumented ‘fired’ engine test

cells (with full (direct plus indirect) costs being ~$30,000 per test) or even using

electrically ‘motored’ cam shaft/cylinder head systems, so a cheaper alternative is

required. Simple-configuration oil-lubricated pin-on-plate or pin-on-disc labs tests,

although used by some (Austin et al, 2012), are too basic to obtain meaningful test

results and are carried out under non-realistic time frames. To the knowledge of the

author, there have been several large-scale development projects where successful

pin-on-plate results (obtained on coated test-pieces) have not translated into posi-

tive results when scaled up to more-advanced engine test-cell environments.

The most likely reason for this difficulty is that contacting stresses in internal

combustion engine cam/valve lifters are not constant – they are cyclic. Here, surface

contacts are subjected to high-speed (>2 m/sec), high-frequency (~50Hz = 3000revs/

min) stressing where themaximumHertz contact stress ranges (Pmax – seeChapter 2,

Section 2.4) from ~200 to ~1500MPa (0.2 to 1.5GPa), depending upon the engine

specification. To overcome this difficulty, an alternative experimental approach is

required to evaluate would-be prototype surface engineered cam follower/valve

lifter components. One successful method is to use a thrust bearing experimental set-

up (Gold & Loos, 2002; Yonekura et al, 2005; Dearnley et al, 2014), Fig. 8.23 and

Fig. 8.24. This approach allows very high numbers of stress cycles to be accumulated

in comparatively ‘short’ test times. In the set-up shown in Fig. 8.23 three coated test

rollers (retained within a plastic bearing cage) are rotated by the action of an
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Figure 8.23 Details of thrust bearing test components: (a) disassembled thrust bearing show-
ing roller bearings (only three rollers actually used per test), housing bearing ring/washer and
driven shaft ring/washer; (b) schematic section through the test head/housing.
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Figure 8.24 Kinematics of the
rolling and sliding components
of a cylindrical roller bearing in
contact with a driving washer
bearing contained in a thrust
bearing test rig.
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uncoated shaft washer, ‘driven’ at 1450 rpm, against an uncoated stationary washer,

whilst the entire assembly is flooded with oil lubricant. The thrust bearing assembly

causes a combination of sliding and rolling action to be transferred to each test roller,

mimicking the cam/valve lifter stress cycle behaviour. In two reported experimental

works (Yonekura et al, 2005; Dearnley et al, 2014), the rotation of each coated test

roller was such that its surface was subjected to rolling and sliding velocities of ~2.5m/s

and 0.25m/s respectively, realised by 20 rotations of each roller as it traversed the

bearing circumferential path. By using two thrust bearing machines, a high number of

used test-pieces were generated. In all cases, a range of maximum Hertzian contact

pressures from 0.5 to 1.5GPa was deployed. To permit these extreme conditions, very

high strength through hardened, martensitic, bearing steel (100Cr6) substrates were

selected, with a Vickers microhardness (Hv) of 760kg/mm2 (~7.6GPa), which equated

to an approximate uniaxial yield strength of 2.5GPa (Yonekura et al, 2005). This

procedure allowed many thousands of stress cycles to be applied to uncoated and

coated test-pieces over a relatively short period of testing (a few days).

8.3.3 Some Experimental Results

This section is largely based on the experimental results obtained by Yonekura et al

(2005) and Dearnley et al (2014). Here, mineral oils, with and without specific oil

additives, were deployed as a lubricant. The former is referred herein as ‘base oil’,

whilst the latter is termed ‘formulated oil’; this conformed to the SAE 10W-40

specification.Whilst several PVD/PACVD coatingmaterials (all applied to through-

hardened 100Cr6 substrates) were evaluated, only three of these are reconsidered

here (Table 8.4): W-doped H:DLC (a hydrogenated DLC), ta-C DLC [a non-doped,

non-hydrogenated, tetragonal (ta) carbon-rich DLC] and PVD-Cr2N. The DLC

coatings were ~1 to 2µm thick, whilst the Cr2N coatings were ~2µm thick.

Scuffing and Galling (Metal Transfer)

Although in principle possible, this mechanism was not observed for uncoated or

coated rollers or their corresponding washers. It would appear that martensitic steel

Table 8.4 Coating materials applied to 100Cr6 martensitic steel roller bearings for thrust bearing tests.

Reported by Yonekura et al (2005) and Dearnley et al (2014).

Coating material Hydrogenated?

Thickness

(µm)

Sp3/Sp2

content

Compressive

internal stress

(GPa)#
Load invariant Vickers

hardness* (kg/mm2; ~GPa)

W-doped H:DLC Yes 2.00±0.04 35/65 0.8 1524–1800 (15–18)

ta-C DLC

(tetragonal

carbon rich)

No 1.77±0.21 80/20 4–6 3100 (31)

Cr2N No 2.0±0.20 N/A Not determined 1721 (17)

* Determined using the method devised by Vingsbo et al, 1986. Also refer to Chapter 2, Section 2.6.
# Determined using the method of Stoney (1909).
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(100Cr6), due to its very high shear yield strength (~1.2GPa), is too strong to be

sheared (or smeared) out and transferred to the counterface material concerned,

since the estimated shear stress acting on the surface was only ~5MPa (based on

a friction coefficient of ~3.5×10−3; see Fig. 8.38). This observation supports the

justification for selecting martensitic steels (carburised, carbonitrided or induction-

hardened steels and cast irons) – found in many internal combustion engine cams

and valve lifter components (Table 8.3) – which have similar surface strengths.

Micro-Abrasion Wear (MAW), Third-Body Abrasion or Polishing Wear

Following testing (Yonekura et al, 2005; Dearnley et al, 2014), evidence of mechan-

ical polishing due toMAWwas observed on the uncoated martensitic 100Cr6 rollers

and washer counterfaces (Fig. 8.25) as well as on the surfaces of the DLC (Fig. 8.26)

and Cr2N coated 100Cr6 materials. This phenomenon is presumed to be due to

cutting and/or ploughing action of hard particles rubbing against the coated/

uncoated washer/roller surfaces. The extent of washer micro-polishing was depen-

dent on the coating hardness of the opposing coated rollers. In one instance, the

MAW of uncoated 100Cr6 steel washers was less when tested against 100Cr6 rollers

coated with W-doped H:DLC than when used against rollers coated with ta-C

(tetrahedral carbon rich) DLC. This was demonstrated by the observation that the

original surface grinding marks of the 100Cr6 washers (Fig. 8.25a) were completely

removed by contact with the harder (Hv~3000kg/mm2) ta-C DLC coating

(Fig. 8.25b), whilst these features were still visible after testing against the less hard

(Hv~1700kg/mm2) W-doped H:DLC-coated rollers (Fig. 8.25c).

20µm

(c)

20µm

(a)

20µm

(b)

Figure 8.25 Surfaces of uncoated thrust bearing washers: (a) original; (b) after testing against
ta-C DLC–coated 100Cr6 roller; (c) after testing against W-doped H:DLC-coated 100Cr6.
The wear is attributed to micro-abrasion. Tests carried out in base oil for approximately the
same time.
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Coating Delamination (Spalling) along the Coating/Substrate Interface

Whilst coating loss via delamination along the coating/substrate interface can evi-

dently take place for some PVD-coated stainless steel piston rings (Fig. 8.17), the

character of a nominally similar effect – created by the cyclic high-pressure contact in

thrust bearing tests – was different. The latter process is initiated by local interfacial

crack propagation, followed by coating blister formation. The blisters subsequently

become decapitated (during contact with the counter-surface). This effect is

depicted schematically in Fig. 8.27. Supporting evidence for the early stages of

(b)

2µm 1µm

(a)

1µm

(c)

1µm

(d)

Figure 8.26 Surfaces of: (a) original; (b)
smoothly worn ta-C DLC–coated 100Cr6 roller;
(c) original and smoothly worn; (d) W-doped H:
DLC-coated 100Cr6. The wear is attributed to
micro-abrasion. Tests carried out in base oil.
After Dearnley et al, 2014.
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Figure 8.27 Schematic sketch showing: (a) crack initiation/growth at the DLC coating/100Cr6
steel substrate interface; (b) subsequent coating relaxation after blister formation; and (c)
wear debris creation caused by blister fracture in an oil lubricated rolling/sliding contact.
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interfacial crack growth was obtained by preparing FIB sections adjacent to major

coating tears (Fig. 8.28). Once the blisters were decapitated, some of them acted as

sources for further interfacial crack growth – but only in the direction of rolling/

sliding contact; this resulted in an appearance resembling that of a partly peeled

orange (Fig. 8.29). The complete sequence of events from blistering through to

delamination (peeling) is depicted schematically in Fig. 8.30. Blister formation for

DLC coating materials applied to steels has been observed to take place following

high-cycle dry rolling contact tests by Podgornik and Vizintin (2002) and in high-

frequency ball impact testing by Ledrappier et al (2008). In both cases, blistering

took place as a result of fatigue fracture growth along the DLC coating/substrate

interface and the subsequent relaxation of internal coating stress.

5µm

Figure 8.28 FIB section showing coating/substrate interface cracking (arrow) of a non-doped,
non-hydrogenated, DLC-coated 100Cr6 adjacent to a major tear, after several million test
cycles.

3mm

Exposed

substrate

Figure 8.29 Advanced state of tearing and dela-
mination of a non-hydrogenated, DLC-coated
100Cr6 roller after testing in formulated oil.
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Rolling Contact Fatigue (RCF) Pitting

In the thrust bearing tests of Dearnley, Elwafi, Chittenden and Barton (2014), RCF

pitting of the uncoated 100Cr6 steel began to take place after very long test durations

(>500 million stress cycles). This phenomenon is well known to obey a Wöhler-type

S-N-curve relationship (Kiessling, 1980) and, apart from through-hardened steel

bearings, afflicts surface carburised and nitrided low-alloy steels (see Chapter 6,

Section 6.5). Here, sub-surface cracks are initiated that initially grow away from and

then, after only a few tens of micrometres’ penetration, return to the surface

(Savaskan & Laufer, 1984). This culminates in the ejection of a particle that leaves

behind a surface pit ormicro-pit with a characteristic hemispherical shape of the type

shown in Figs. 8.31 and 6.30 (also see Erdemir, 1992). Such features often exceed

200µm along their major axis. This was the main life-limiting effect for uncoated

martensitic 100Cr6 test rollers; it was only occasionally observed in Cr2N (Fig. 8.32)

and W-doped DLC-coated 100Cr6 (Table 8.5).

Pinholing

A completely different type of pitting, herein designated ‘pinholing’ was also

observed (Fig. 8.33; Yonekura et al, 2005; Dearnley et al, 2014). Such pits were

much smaller (typically <5µm across) than RCF pits and were distributed uniformly

over the coated surfaces. This effect was most often observed on wear-tested DLC

coatings and more frequently when tests were carried out in formulated oils. Pitting

phenomena reported for chill cast iron cam surfaces (Eyre & Crawley, 1980) were

attributed to a negative action by ZDDP oil additives; these may have similarly

promoted micro-pitting of the DLCs considered here (Fig. 8.33). FIB sections made

through pinholes formed in DLC coatings show they often do not penetrate to the

substrate; neither are they associated with any cracking (Fig. 8.34). Clearly, deeper
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(a) (c)
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Figure 8.30 Schematic depiction of the progression of micro-delamination and tearing of ta-C
DLC coating on a100Cr6 roller bearing substrate: (a) initial blister distribution – grey-filled
ellipses; (b) sheared blisters and micro-pits (substrate exposure) – white-filled ellipses; (c)
initial tearing of DLC coating in direction of rolling; (d) pronounced tearing and coating loss.
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work is needed to uncover the fundamentals governing their formation. Fortunately,

pinholes do not appear to limit the life of DLC coatings.

8.3.4 Life Limits of PVD-Coated Martensitic Steels

In the laboratory test results discussed here (Dearnley et al andYonekura et al), only

a few of themechanisms highlighted in Section 8.3.3were responsible for limiting life

200µm

(a)

(b)

Figure 8.31 Example of a large rolling
contact fatigue (RCF) pit produced in
the surface of an uncoated 100Cr6 steel
roller after testing in formulated (SAE
10W-40) for 670×106 cycles at
a maximum Hertz contact pressure of
1.5GPa: (a) low-magnification image; (b)
higher-magnification image, SEM.

(a) Exposed

substrate

RCF pit

(b)

0.5mm 

RCF pit

Figure 8.32 Cr2N-coated 100Cr6 test roller after 13.9 hours’ testing in formulated oil (SAE
10W-40), showing: (a) delamination and RCF pit; (b) a higher-magnification view of the RCF
pit (SEM). Large arrows indicate direction of rolling/sliding of roller bearing.

Surface Engineering for Automotive Engine Components 415

www.cambridge.org/9780521401685
www.cambridge.org


Cambridge University Press
978-0-521-40168-5 — Introduction to Surface Engineering
P. A. Dearnley 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

of uncoated and coated martensitic 100Cr6. These are summarised in Table 8.5.

In the earliest of this work (Yonekura et al, 2005), lifetime data for uncoated,

W-doped H:DLC and Cr2N coated 100Cr6 were determined (Fig. 8.35). (Non-

doped, non-hydrogenated ta-C DLC–coated 100Cr6 was not investigated.)

The testing indicated that PVD-Cr2N coated 100Cr6 failed prematurely via delami-

nation after relatively short test durations (Fig. 8.35). In two of the tests, the

delamination of the PVD-Cr2N coating triggered the formation of large RCF pits

in the substrate (Fig. 8.32). In later research (Dearnley et al, 2014), both RCF pitting

(of uncoated rollers) and delamination of ta-C DLC–coated steel (100Cr6) were

observed to be statistical in character, enabling life data to be plotted on S-N graphs

(number of stress cycles versus time to failure) in the manner of Wöhler diagrams

50µm

50µm

(a)

(b)

Figure 8.33 Example of pinholing on the sur-
face of a W-doped H:DLC-coated 100Cr6
roller after approximately 500×106 stress
cycles at a maximum Hertz contact pressure
of 1.5GPa, after testing in: (a) base oil; (b)
formulated oil. Note the smooth polished sur-
face of the non-pitted areas, attributed to
micro-abrasion.

5µm

Figure 8.34 FIB section revealing the depth of
a ‘pinhole’ in a non-hydrogenated, non-doped, DLC-
coated 100Cr6 after several million test cycles in for-
mulated oil. The pit (arrowed – beneath dashed line)
has not reached the coating/substrate interface.
(The outermost white layer is Pt applied immediately
prior to ion beam sectioning to assure edge integrity.)
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(Hertzberg, 1976). Results obtained in base oil and formulated oil are shown in

Figs. 8.36 and 8.37, respectively. (Further testing on Cr2N coated 100Cr6 was not

deemed sensible due to its poor response in previous tests – Fig. 8.35.) For compar-

ison, test results of W doped H:DLC coated 100Cr6 test rollers are included in the

Wöhler plots shown in (Figs. 8.36& 8.37); it should be noted, however, that failures

of these materials were usually governed by micro-abrasion wear of the coating.

The latter data was obtained under the highest available, maximumHertzian contact

stress of 1.5GPa. Testing at lower contact pressure was not feasible for these

materials, since this was very likely to have taken many weeks to complete.

DLC coatings comprise a mix of carbon that is bonded in an analogous manner to

diamond (tetrahedral bonding) and graphite (Robertson, 2002). As the ratio of the

diamond (Sp3) to graphitic (Sp2) bonding increases, the compressive internal stress

1000

100

10

1
Uncoated Cr2N

coated

W-doped

H:DLC

coated

N
u
m

b
e
r 

o
f 
h
o
u
rs

 t
o
 f
a
ilu

re
 e

v
e
n
t 

Figure 8.35 Durability of uncoated 100Cr6
compared to the same material coated with
Cr2N and W-doped H:DLC. Tests conducted
in a formulated SAE 10W-40 mineral oil.
After Yonekura et al, 2005.

Table 8.5 Lifetime limiting wearmechanisms. Reported by Yonekura et al (2005) andDearnley

et al (2014).

Test material

Wear mechanisms

observed

Mechanism(s) responsible for

controlling lifetime limit

Uncoated martensitic 100Cr6 Micro-abrasion

RCF pitting

RCF pitting (most cases)

Few cases where life limit not reached

W-doped H:DLC-coated 100Cr6 Micro-abrasion

Pinholing

Micro-abrasion (most cases)

RCF pitting (2 cases only)

Non-doped, non-hydrogenated

DLC-coated 100Cr6

Micro-abrasion

Pinholing

Delamination

Delamination (all cases)

Cr2N-coated 100Cr6 Micro-abrasion

Delamination

RCF pitting

Delamination (most cases)

RCF pitting (2 cases only)
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and its hardness proportionately increase. This is confirmed by the data shown in

Table 8.4. The bearing test results (Figs. 8.36 & 8.37) clearly indicate that under

mineral oil–lubricated sliding/rolling contact conditions, a high coating hardness

alone is insufficient to enable high durability; the ta-C DLC coating was ~1.5 times

harder than theW-dopedH:DLC (Table 8.4), yet it failed quickly. This was attributed

to the ta-C coating having a higher internal stress level than did theW-doped H:DLC.

According to Peng and Clyne (1998a, b), coating delamination is promoted by a high

value of internal stress; i.e., stored elastic energy in the coating drives crack growth

along the coating/substrate interface, provided this exceeds the fracture strength of the

interface. The W-doped H:DLC coated 100Cr6 did not suffer this mechanism and

outlasted the ta-CDLC–coated variants (Figs. 8.36& 8.37). Presumably, this happened

because the compressive internal stress (~0.8GPa) contained in the W-doped H:DLC

coatings was insufficient to cause interfacial crack initiation and growth. In contrast,

the higher stored elastic energy (internal stress) within the ta-C DLC–coated variants

(~5GPa) enabled relatively easy fatigue fracture along the coating/substrate inter-

face to take place after only (in some cases) 1 to 10 million stress cycles. The main

drawback of the W-doped H:DLC coatings was that they were eventually worn

through via MAW. Clearly, it would be advantageous to develop these further to

obtain better MAW resistance whilst maintaining a similar or lower level of internal

stress. So far, this has not been achieved. Mabuchi et al (2013) have recently tested
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Figure 8.36 Collated S-N data for coated and uncoated 100Cr6 rollers tested against uncoated
100Cr6 bearing rings in a mineral-base oil. The line shows the linear regression fits for the ta-
C-coated roller data set. Right-angled arrows indicate non-failures of uncoated rollers tested
at 1.5GPa.
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Figure 8.37 Collated S-N data for coated and uncoated 100Cr6 rollers tested against uncoated
100Cr6 bearing ring in a formulated SAE 10W-40 oil. The line shows a linear regression fit for
the ta-C DLC–coated roller data set. Right-angled arrows indicate non-failures of uncoated
rollers tested at 1.5GPa.
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Figure 8.38 Mean (a) dynamic friction coefficients and (b) test head temperatures for
uncoated and DLC-coated 100Cr6 rollers tested against uncoated 100Cr6 bearing rings in
base and formulated SAE 10W-40 oil. Pmax was 1.5GPa in all cases. Measurements for
uncoated and W-doped H:DLC coated 100Cr6 rollers were determined over the first 50
hours of testing, whilst those for ta-C DLC–coated rollers were determined over the first 2
to 6 hours, after which most tests were stopped due to coating delamination.
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hydrogen-free ta-C DLC–coated steels for valve lifter applications in one series of

Nissan internal combustion engines. Interestingly, they used a much lower Hertzian

contact pressure (~0.24GPa) than is usual for this application. This suggests that these

particular devices have been redesigned to operate at contact pressures lower than

those hitherto used for cam/cam-follower applications, presumably to prevent coating

delamination of the type shown in Figs. 8.29 and 8.30.

It is often claimed that DLC coatings, per se, offer some kind of natural low-

friction quality. Some of the friction measurements of the rolling/sliding contact

tests considered in this section are shown in Fig. 8.38a; these show insignificant

differences in the coefficients of friction between the uncoated and DLC coated

100Cr6 steel variants. Moreover, mean oil temperatures were similar for all tests

(Fig. 8.38b). Accordingly, the observed differences in wear behaviour (under

rolling/sliding contact conditions – Figs. 8.36 and 8.37) mainly reflect differences

in the physical properties of the coated and uncoated systems concerned and

were not directly influenced by the observed friction coefficients. Chemistry

differences, which may have affected responses to pinholing (Fig. 8.33), did not

influence coating life.
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