
Twistor Theory After 25 Years - its 
Physical Status and Prospects 

R. Penrose 

Introduction 

The primary objective of twistor theory originally was-and still is-to find 
a deeper route to the workings of Nature; so the theory should provide a 
mathematical framework with sufficient power and scope to help us towards 
resolving some of the most obstinate problems of current physical theory. 
Such problems must ultimately include: (1) removing the infinities of quan­
tum field theory, (2) ascertaining the nature and origin of symmetry and 
asymmetry in the classification of particles and in physical interactions, (3) 
deriving, from some fundamental principle, the strengths of coupling con­
stants and the masses of particles, (4) finding a quantum gravity theory ca­
pable of satisfactorily addressing the issues raised by space-time singularities 
and the structure of space-time in the small, (5) constructing a picture that 
makes sense of the puzzling non-locality and conceptual peculiarities inherent 
in the process of quantum measurement. Does twistor theory have anything 
of significance to contribute concerning these matters? Might it at least point 
us in some appropriate directions? 

I shall comment on these issues individually in a moment. But as things 
stand, it must be said that the successes of twistor theory to date have been 
almost entirely in applications within mathematics, rather than in furthering 
our understanding of the nature of the physical world. I would think of 
twistor theory's physical role, so far, as being something perhaps resembling 
that of the Hamiltonian formalism. That formalism provided a change in the 
framework for classical Newtonian theory rather than a change in Newtonian 
theory itself. The Hamiltonian scheme (at least Hamilton's own part in its 
development) was motivated very much by a physical analogy between the 
behaviour of particles and of waves; but it was not until the advent of quantum 
physics that a change in physical theory was put forward-indeed one in 
which particles and waves became actually the same thing, rather than being 
merely analogous. When the mathematics for a quantum theory was required, 
Hamiltonian formalism was in place and provided the ideal vehicle, ready to 
accommodate the essential changes that were needed, in order that physical 
theory could be transported from classical to quantum. The ambitious role set 
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2 R. Penrose - Twistor Theory After 25 Years 

out for twistor theory, then, is that, likewise, when enough of its mathematics 
has been developed, that theory also will be in place and, with relatively 
minor changes, will turn out to be just what is required for a much needed 
new physics. 

In this article, I shall be concerned primarily with physical issues, and 
how I feel that twistor theory stands, or ought to stand, with regard to them. 
The mathematical applications of the theory are well covered by articles by 
other authors in this volume, and some of these applications have proved 
to be unexpectedly fruitful. With regard to physical applications and aside 
from developments connected with the fundamental issues referred to above, 
which I discuss in a moment), there has one noteworthy and unanticipated 
success: the concept of quasi-local mass and (angular) momentum in general 
relativity. For a great many years, relativists had resigned themselves to the 
idea that the mass-energy of the gravitational field cannot be localized, and 
only the total energy of an asymptotically flat space-time can be assigned 
an unambiguous meaning. Twistor theory now allows us to do a good deal 
better (Penrose 1982, Penrose and Rindler 1986), though various difficulties 
remain. A full and up-to-date account is to be found in Paul Tod's article 
(1990-this volume; see also Mason and Frauendiener (1990), this volume), 
and it will not be necessary for me to go into the details here. 

Nonetheless, one is compelled to confess that, so far, rather little that 
is both tangible and new has come through with regard to twistor theory's 
original physical aspirations. Let us now try to see how the theory stands 
with regard to each in turn of the above-mentioned questions. 

1 The infinities of quantum field theory 

Of the fundamental physical problems referred to in the opening paragraph, 
it is only the issue of infinities of quantum field theory that has been signifi­
cantly addressed, so far. The main progress in this direction has been in the 
theory of twistor diagrams (see Hodges 1990 and Huggett 1990, this volume) 
which has been evolved as the twistor analogue of Feynman graphs. The 
intention has been that a procedure essentially equivalent to the conventional 
Feynman theory could be developed-except that it is intended that finite 
answers are to be obtained in important cases where the Feynman graphs 
diverge. The initial work in this area proceeded to a considerable extent 
by guesswork, analogy, geometrical considerations, aesthetics, and wishfull 
thinking (Penrose and MacCallum 1972, Penrose 1975b; d. also Sparling 
1975, Qadir 1978), but then later work (Hodges 1983a,b, 1985a,b 1990, this 
volume, d. also Huggett 1990 this volume) not only put the twistor diagram 
theory on a sound basis, but also led to actual changes in which certain of 
the infinities of the standard theory have indeed become replaced by finite 
expressions. 

As an initial step of the original scheme, the usual momentum states of 
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§1 The infinities of quantum field theory 3 

the conventional theory are replaced by the (finite-normed) elementary states 
that arise naturally in twistor theory, so that the calculated amplitudes have 
some chance of being actually finite, rather than involving delta-functions, 
as is the case with momentum states. This allows, as a general objective 
of the twistor diagram formulation, that amplitudes might be computed over 
compact (high-dimensional) contours, the integrands being supposed to be an­
alytic expressions at all points of the contours, so that the answers would ac­
cordingly be always guaranteed to be finite whenever these two requirements 
can be satisfied. However, since some of the answers, as 'correctly' computed 
by Feynman graph methods, are actually divergent, this entails that some 
change must be introduced into the procedures from those that would be 
obtained by direct translation of the corresponding Feynman graphs. This 
applies, as Andrew Hodges noted a good many years ago, even to some 'tree 
diagrams' of the standard Feynman theory, which are infra-red divergent. He 
was able to circumvent this problem in an ingenious way (Hodges 1985a), 
by replacing the previous factors zaWa that had ocurred in twistor diagram 
expressions according to 

where k is some (dimensionless) numerical constant whose value would be 
ultimately fixed by theory or experiment. At first, k merely provides a number 
whose logarithm enters into a finite expression which replaces each infra-red 
divergent quantity (the divergence being recovered when k -+ 0), but k seems 
also to playa key role in eliminating ultra-violet divergences (Hodges 1985a) 
and it has a separate importance in relation to twistor diagrams for massive 
particles. 

The factors zaWa + k bear some resemblance to factors 

za X a Ia(J + m, 

which Hodges uses in the twistor diagrams describing massive particles ('pro­
jection operators' for the mass eigenvalue m). These diagrams also make use 
of the so-called 'universal bracket factor' [ ... Ju (d. Penrose 1979c, Hodges 
1985b) which is 'defined' (formally) by the divergent expression 

[XJu = ... + (X)_2 + (X)_l + (x)o + (xh + (xh + ... 

where, for n = 0,1,2,3, ... 

(X)-n = (xrn /n! (contour with boundary on x=O) 

and 
(X)n+l = -n!( -xrn- 1 /27ri (contour surrounding x=O), 
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4 R. Penrose - Twistor Theory After 25 Years 

or by the formal expression, suggested by George Sparling (d. Penrose 1979) 

Although the divergence difficulties are cleverly circumvented in Hodges's 
particular 'mass-projection' expression, a proper general understanding of the 
universal bracket is still lacking. 

Many other problems in twistor diagram theory remain to be solved, but 
some good progress has been made towards the goal of finding a complete 
formulation of the standard model of weakly or strongly interacting particles in 
twistor diagram terms (Hodges 1990, this volume). One particular problem 
is to obtain a fuller understanding of the (high-dimensional) contours that 
occur in twistor diagrams. As noted above, these are supposed always to 
be compact (perhaps with boundary) so that the integrals will always be 
finite. The extent to which it has been possible to satisfy this compactness 
requirement so far has been definitely encouraging. However, particularly 
when mass is present, the status of this requirement is still unclear and it 
seems to demand the use of 'blown-up twistor space' according to which the 
line I, in projective twistor space PT, is replaced by a quadric surface. This 
is related to the 'googly twistor space' needed for the description of general 
relativity, and which will be described in outline below. 

Another particularly important issue of twistor diagram theory is to un­
derstand, in purely twistorial terms, which twistor diagrams are to appear 
in any given process, and with what weighting (and sign) each diagram is 
to occur. A popular approach to the corresponding problem for Feynman 
diagrams, in modern quantum field theory, is to use the (formal) method of 
path integrals. However, an analogous procedure for twistor theory has not 
yet come to light. There is an apparently fundamental conflict between the 
twistor description of fields and that which is addressed by a path-integral 
approach. In the latter, paths are deliberately allowed in which the field equa­
tions are violated, whereas in twistor theory it is considered to be a virtue 
for the classical field equations to come out as solved automatically by the 
twistor descriptions! In twistor (diagram) theory 'off-shell' contributions in 
which field equations are violated come about in a different way (in effect, 
by the introduction of further twistors). The relation between this and path 
integrals has not yet come to light. 

Another possible line of approach to the problem of 'twistor diagram gen­
eration' is through the ideas of a generalized conformal field theory involving 
'pretzel twistor spaces' (Hodges, Singer and Penrose 1989, Penrose 1989), 
though this approach has not yet progressed very far. A 'pretzel twistor 
space' is a higher-dimensional analogue of a Riemann surface (with 'holes'), 
as occurs in standard conformal field theory (or string theory). Though per­
haps superficially similar to a 'membrane' (or 'p-brane') theory (i.e. higher­
dimensional string theory), this approach is fundamentally different in that 
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§1 The infinities of quantum field theory 5 

the generalizations of Riemann surfaces are complex manifolds, either of three 
dimensions (projective case) or of four (non-projective), and in that the com­
plex manifolds play the role of twistorspaces, in relation to space-time, rather 
than being regarded as being 'in' space-time. So long as general relativity is 
not involved, each such 'pretzel twistor space' would be a flat twistor space 
X, defined by the following properties, in the three-dimensional projective 
case: 

1. X is a compact complex 3-manifold with boundary ax; 

2. each component of ax is a copy of (i.e. is CR-equivalent to) the PN of 
standard twistor theory; 

3. each point of X - ax has a neighbourhood which is holomorphic to a 
neighbourhood of a line in CP3; 

4. the canonical bundle of X admits a fourth root. 

The reason for condition (4) is to enable the corresponding non-projective 
(four-dimensional) flat twistor space to be defined as the appropriate line 
bundle over the projective flat twistor space. 

According to this proposal, a scattering process would be described by 
one of these flat twistor spaces (or by a linear superposition of processes de­
scribed by different. such spaces), where a positive or negative orientation 
would be assigned to each component of ax. Each positively oriented com­
ponent would refer to an incoming particle state, and each negatively oriented 
component, to an outgoing particle state, where the in- and out-states (taken 
to be massless, in the first instance) would be described in the standard way 
by (1st) sheaf cohomology elements (restricted to PN). The procedure fol­
lows closely the one adopted in ordinary conformal field theory (cf. Segal 
1990, Witten 1989). It is strongly motivated by the close analogy between 
the way (a) that the 'equator' SI (unit circle) divides the Riemann sphere into 
the 'northern hemisphere' S+ and 'southern hemisphere' S- and the way (b) 
that PN divides PT into PT+ and PT-. The splitting (a) of functions (i.e. 
HO-elements) on SI into their positive and negative frequency parts according 
to whether they extend holomorphically into S+ or S-, is closely mirrored by 
the splitting (b) of solutions of the massless field equations into their positive 
and negative frequency parts according to whether the corresponding twistor 
functions (as HI-elements) extend into PT+ or PT-. (This important fact 
realized one of the key original motivations behind twistor theory; cf. Penrose 
1986a.) 

The hope is that there should be some close relation between the con­
struction of flat twistor spaces, their corresponding conformal field theories, 
and twistor diagrams. This would mirror the way that the early string theory 
showed how duality diagrams (Riemann surfaces with 'holes') could be used 
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6 R. Penrose - Twistor Theory After 25 Years 

to make sense of the 'counting' of Feynman diagrams in strong interaction 
theory, and can also serve to replace certain collections of infinite Feynman 
diagrams by finite expressions. There does seem to be a corresponding role 
for twistor diagrams in relation to flat twistor spaces, but unfortunately this 
has not been explored very far as yet. 

In conformal field theory, the in-states [out-states] are elements of Ferm­
ionic 'Fock spaces' 

where each H is the space of positive-frequency [negative-frequency] functions 
(or sections of bundles) on a positively [negatively] oriented Sl that consti­
tutes a 'hole' boundary in the Riemann surface in question. In the case of a 
pretzel twistor space, the 'hole' boundaries are copies of PN, and instead of 
functions, we have first cohomology elements, representing wave-functions of 
massless fields. We cannot interpret the elements of the higher-order spaces 

HA~ HAHA~ HAHAHA~ 

as representing many-particle states, since each different particle taking part 
in a scattering process is to be represented by a different PN hole. Instead, 
the elements of these higher-order spaces (functions of several twistors) must 
presumably represent massive particles, in accordance with the twistor par­
ticle programme, that will be briefly described in the next section. 

2 Symmetry and asymmetry in particle interactions 

One of the most striking things about the twistor formulation-for good or 
for bad-is that by choosing the twistor space PT to be primary, rather than 
the dual space pr (or vice versa), we are led to an essentially left-right asym­
metric description of physics. This would seem to be a desirable thing when 
we are trying to describe aspects of physics-notably weak interactions-for 
which such left-right asymmetry is known to be a fact of nature, but its de­
sirability is more questionable for those interactions which are believed to be 
left-right symmetric. In particular, in the case o£.general relativity, we have 
a fundamental theory of space-time structure which is left-right symmetric, 
and this presents a severe challenge to any asymmetric twistorial description. 
It is a remarkable fact, however, that several new approaches to the de­
scription of standard general relativity have also been guided, for apparently 
quite independent reasons, into a left-right asymmetric formulation. These 
are approaches which relate, in one way or another, to what are known as 
'Ashtekar variables' (Ashtekar 1988-see also Mason & Frauendiener 1990, 
this volume). The left-right asymmetry is expressed as an asymmetry be­
tween primed and unprimed 2-spinor indices-or, what amounts to the same 
thing, to an asymmetry between anti-self-dual and self-dual curvatures. 
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§2 Symmetry and asymmetry in particle interactions 7 

The basic 'twistorial' reason for believing in a left-right asymmetric ap­
proach to physics (i.e. a preferance either for PT or for PT* in the formulation) 
arises from the 'twistor-function' description of linear massless fields. A holo­
morphic function f(ZOt) (actually a representative l-cocycle for an element 
of H1(PT+, 0)), which is homogeneous of degree -n - 2, describes a wave 
function for a massless particle of helicity n/2 (n being an arbitrary integer). 
It is a striking fact that in this way we can automatically incorporate the 
two essential requirements for a massless one-particle wave-function, namely 
satisfaction of both the massless field equation and the positive-frequency 
condition. The fact that we are using a holomorphic function of the twistor 
ZOt (i.e. a 'function of ZOt' rather than a 'function of ZOt and ZOt') is the twisto­
rial version of the basic quantum-mechanical requirement that ordinary wave 
functions must be functions just of position (or just of momentum) not func­
tions of both position and momentum. For ordinary wave functions we can, 
if we prefer, choose functions of momentum instead of functions of position 
for our descriptions of quantum states, so long as we are consistent about 
this. Likewise, we can, if we prefer, consistently use holomorphic functions 
of dual twistors WOt (i.e. holomorphic functions of ZOt, where we simply re­
label ZOt as WOt , i.e. anti-fiolomorphic functions of ZOt. However, such an 
alternative choice must be consistent: it would make no sense to use, say, 
a position description for particles of positive electric charge and a momen­
tum description for particles of negative electric charge; and likewise it would 
make no sense to use, say, a dual twistor description for massless particles 
of positive helicity and a twistor description of massless particles of nega­
tive helicity. (Such a description might have seemed tempting in view of the 
fact that right-handed-i.e. self-dual-non-linear gravitons seem to have a 
natural description in terms of dual twistors and left-handed-i.e. anti-self­
dual-non-linear gravitons, a natural description in terms of twistors.) A 
particularly awkward aspect of any such attempt to describe massless par­
ticles in this hybrid way arises from the fact that there is often the need to 
describe massless particles which are not simply entirely right-handed or left­
handed, such as plane-polarized photons. Thus, at least if we are describing 
massless particles, it seems to be necessary to make a choice in our twistorial 
representation: either a description in terms of twistors ZOt must be used or 
a description in terms of dual twistors WOt . 

So long as we are concerned only with linear massless fields (without 
sources), this does not imply any serious left-right asymmetry for what it 
is possible to achieve with the twistor formalism l but, as is apparent with 
the the 'non-linear graviton construction' for (anti- ) self-dual gravitational 
fields (Penrose 1976) and the Ward construction for (anti- )self-dual Yang­
Mills fields (Ward 1977), the situation seems very awkwardly different for 
non-linear fields. (This raises the issue of the 'googly problem' which I shall 
return to later.) If it is supposed that Nature's ways actually accord with some 
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8 R. Penrose - Twistor Theory After 25 Years 

of the basic ideas of twistor theory, and that she thus prefers, say, a twistorial 
description-or else she prefers a dual-twistorial description-then it would 
be expected that some left-right asymmetry should be present with the actual 
physics of non-linear massless fields. Of course, we already know that weak 
interactions are left-right asymmetric, but the above considerations should 
apply also to the gravitational field. The standard Weinberg-Salam-Glashow­
Ward theory of unified electromagnetic and weak interactions implies that 
there is an indirect left-right asymmetry in electromagnetism, but the above 
considerations seem to imply a 'twistor expectation' of a left-right asymmetry 
in gravitation also. 

Even for linear fields, there is twistorial left-right (or, rather, a self­
dual/anti-self-dual) asymmetry in the case of fields with sources. For ex­
ample, in the case of a Coulomb field, the twistor-function for the self-dual 
part would have the form 

f( zOt) 
1 

while that for the anti-self-dual part would be something like 

or 
Q Ot{3ZOt Z{3 

g'(ZOt) = log A.,Z'YBIiZo' 

In none of these cases do we get a global representation of the space-time field 
as an HI element in twistor space, but in the self-dual case we get a global 
description as a relative HI element (Bailey 1985). In the anti-self-dual case 
this does not seem to be so, however, and the situation is more obscure. 
Moreover, when we go over to the 'non-linear' Ward representation in terms 
of a line-bundle over in the anti-self-dual case we get 'charge quantization' 
and a non-Hausdorff bundle (Penrose and Sparling 1979, Bailey 1985). There 
is no analogue (as yet) in the self-dual case. 

I have phrased the above discussion in terms of left-right asymmetry (i.e. 
parity P), since this is the most obvious of the discrete symmetry operations 
which convert left-handed massless particle into right-handed ones. However 
the operation C of charge-conjugation (particle-antiparticle interchange) also 
achieves this (witness the case of a neutrino), as do the operations CT and PT 
(where T stan.ds for time-reversal symmetry). All of these four symmetries 
are violated in weak interactions, and it would appear that such violations 
could be well accommodated by twistor theory. In the context of the rules 
governing twistor diagrams, one only needs an asymmetry under interchange 
of black spots (twistors ZOt) with white spots (dual twistors Wa ). But in 
addition, T and C P are known to be violated in Ko-decay, and this could arise, 
twistorially, out of some sort of asymmetry between PT+ and PT-. There 
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§2 Symmetry and asymmetry in particle interactions 9 

are (controversial!) reasons for believing that even CPT should be violated 
in quantum gravity theory (cf. Penrose 1981, 1986b, 1989 and below). Such 
further symmetry violations would seem much more natural in the context of 
twistor theory than they do in standard space-time descriptions, but a good 
deal more understanding is needed if we are to see what the exact role of 
twistor theory in symmetry violation actually is. 

Let us next consider massive particles, and how the quantum description 
of such particles is best to be incorporated into twistor theory. We recall that 
the twistor theory of massless fields is closely bound up with the quantized 
expressions for momentum and angular momentum for a massless particle: 

P .,., Mab = ~w(A.,.,Bl&A'B' _ ~-w(A' .... B'l&AB 
a = 1f A'" A, ." '- '" '-

where, in the twistor (as opposed to dual twistor) representation of massless 
wave-functions, we make the replacements 

8 
1fA f--+ ---

8wA ' 

8 wA ' f--+ ---
81f A' , 

in accordance with the standard twisor quantization rule 

- 8 
Zo f--+ - 8Zo. 

(Here I am taking n = 1.) These give the standard momentum and angular 
momentum operators when applied to a twistor function of the one twistor 
variable zo, the squared mass m2 = Papa being identically zero. The proce­
dure which is adopted in twistor particle theory in order to handle particles 
of non-zero mass is to replace the above expressions by sums 

r r 

Pa = L 1fiA,1fiA M ab = L {iw~A1fflfA'B' - iwlA'1ft l f AB} 
i=l i=l\ 

where instead of acting on functions of just one twistor, these (quantized) 
operators now act on functions of several twistors 

Zf,···,Z;, 

with 

A twistor (wave- )function for a massive particle is now to be a holomorphic 
function of Zf, ... , Z~ (although the possibility that certain of these twistor 
variables might better be taken as dual twistors should not be overlooked). 
According to the original twistor-particle scheme (which I sometimes refer to 
as 'naive twistor particle theory') leptons were to be the particles described 
by functions of just two twistors, say yo and ZO, and hadrons by functions 
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10 R. Penrose - Twistor Theory After 25 Years 

of three twistors, say XO<, yo< and Zo<. One of the reasons for this was that 
the n-twistor internal symmetry group (the group of linear transformations 
of Zt and Z;o< that leaves Pa and Mab invariant) is a slight inhomogeneous 
extension of SU(2) xU(I)/Z2 (or U(2)) in the case of n = 2, and a rather larger 
inhomogeneous extension of SU(3) in the case n = 3. These were basically 
the symmetry groups that arose in the standard classification of leptons and 
hadrons, respectively-in the 'good old days' before 'charm' was discovered! 
The 3-twistor scheme for the hadrons of those days provided quite a strikingly 
good fit, for the most part, although there were some notable anomalous 
multiplets, such as the nonet (rather than the expected octet) which involves 
the .,,0, and certain families of resonances which seemed to have the wrong 
symmetries (see Hughston 1979). The 2-twistor scheme for leptons seemed 
to present more serious problems, since it provided for only two quantum 
numbers (in addition to spin and mass )-identifiable with charge and lepton 
number-leaving no way of distinguishing the muon from the electron. An 
ingenious suggestion due to George Sparling was that the required additional 
quantum number might be, in effect, the sign of the quantum number for 
total spin! He noted that the squared total quantum-mechanical spin J2 of a 
massive particle, since it takes the form 

(in units of h), where j is the usual total spin quantum number, is invariant 
under 

j f----t - j - l. 

Thus, for an observed total spin value, there are really two possible values 
of the quantum number j, namely j and - j - 1. Sparling's suggestion was 
that we can allow for negative values of j , and the idea was that perhaps 
what distinguishes the muon from the electron was that one of these particles 
has j = ~ and the other has j = -~. (There was some hint of support 
for this kind of idea in the expression for the spin operator in the 2-twistor 
scheme.) It may be that this suggestion has less plausibility now than it 
had at the time, owing to the further complication of the discovery of the 
r-Iepton. Nevertheless there does seem to be something in this idea, which 
shows up in the case of hadrons. It is (or was!) well known that if we plot 
the hadron resonances, for each particular set of values of its SU(3) quantum 
numbers, in a diagram with the j vertical and m2 horizontal, then most of 
the resonances will lie on a family of remarkably straight lines rising off to 
the right-the Regge trajectories. In the case of the baryons, it is possible 
to divide these trajectories into two classes, those corresponding to natural 
parity (to = 1) and those corresponding to unnatural parity (to = -1). If 
we assume that (say) the natural parity baryons have positive j and the 
unnatural parity ones, negative j, and we now plot m2 against j, we find 
th;'tt the pairs of Regge trajectories join together into single straight lines, 
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