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1. The description and measurement of
plant canopy structure

Introduction

Plant canopy structure is the spatial arrangement of the above-ground organs
of plants in a plant community. Leaves and other photosynthetic organs on a plant
serve both as solar energy collectors and as exchangers for gases. Stems and branches
support these exchange surfaces in such a way that radiative and convective exchange
can occur in an efficient manner. Canopy structure affects radiative and convective
exchange of the plant community, so information about canopy structure is necessary
for modelling these processes.

In addition to considering how canopy structure and environment interact to affect
the processes occurring in the plant community, the influence of the canopy on the
environment should also be considered. The presence and structure of a canopy exert
a major influence on the temperature, vapour concentration, and radiation regime in
the plant environment. Interception and transmission of precipitation are also affected,
as are soil temperature and soil heat flow. Canopy structure can therefore be important
in determining the physical environment of other organisms within the plant
community, and can strongly influence their success or failure. Plant canopy structure
can indirectly affect such processes as photosynthesis, transpiration, cell enlargement,
infection by pathogens, growth and multiplication of insects, photomorphogenesis,
and competition between species in a plant community. The indirect influence on soil
moisture and temperature can also affect root growth, evaporative water losses from
the soil, residue decomposition and other soil microbial processes.

A complete and accurate description of a canopy would require the specification of
the position, size and orientation of each element of surface in the canopy. Such a
description is clearly impossible to obtain, except for very simple canopies, so that
data needs in terms of specific applications must be carefully considered. Canopy
properties are generally described statistically as appropriate space or time averages. In
some cases additional statistical parameters are needed for an adequate description of
the canopy.

Canopies vary on spatial scales ranging from millimetres to kilometres, and on time
scales ranging from milliseconds to decades. The description of this variation is an
important part of understanding and using canopy structure information.
Consideration of variation in structure can be useful in recognizing patterns which
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may exist, and using these patterns to maximize sampling efficiency or minimize
sampling errors.

Application of the principle of least work (Monteith, 1985) is particularly
appropriate to measurements of canopy structure. Because it is possible to invest a lot
of time and effort in measurements of canopy structure, it is particularly desirable to
determine data requirements before an extensive measurement programme is
undertaken.

Phytometric characteristics of plant canopies

The characterisation of plant canopies using various statistical parameters has
been presented in considerable detail by Ross (1981). The material presented here is
intended to be a brief summary. The reader is referred to the original work for
additional detail.

Ross (1981) recommends that descriptions of plant canopies should include
measurements at four levels of organisation: individual organs, the whole plant, the
pure stand, and the plant community. Each higher level of organisation is intended to
include elements from the next lower level, and to add parameters of its own.

At the individual organ level, parameters such as typical length, width, area, dry
mass, specific water content, and radiative properties of phytoelements are measured.
Whole plants are often symmetric, and have outlines which can be represented by
some geometric shape. The parameters which describe the geometric shape are
therefore useful as parameters for describing average characteristics of individual
plants. Ellipsoidal shapes have been suggested as good approximations to plant
outlines (Charles-Edwards & Thornley, 1973; Mann, Curry & Sharpe, 1979:
Norman & Welles, 1983). Plants which cannot be represented by a complete ellipsoid
can often be represented by a truncated ellipsoid. In addition to plant height and
other parameters which relate to the overall geometric shape of the plant, it may be
useful to record stem diameter at one or more locations, total number of leaves per
plant, number of nodes per plant, number of living leaves per plant, numbers of
stems and reproductive organs per plant, and spatial distribution of organs within
the plant outline.

In an attempt to maximise return for a given sampling effort, Ross (1981)
suggested a two-stage sampling process in which primary statistical characteristics
such as plant height, height of the top and bottom of the foliage canopy, stem height
and diameter, number of leaves (where possible) and number of living leaves (where
possible) are determined on an initial sample of 150-300 plants. These primary
characteristics are then examined to select 15-30 plants to be analysed in greater detail
to determine average characteristics of individual organs, spatial locations of organs,
and orientation of surfaces. If it is not possible to determine spatial locations of organs
within the plant envelope, parameters for simple models of foliage distribution should
be obtained. Mann er al. (1979) suggested three possible idealised distribution
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functions. The uniform, the quadratic, and the truncated normal. The uniform
distribution is based on the assumption that the probability of finding an element at
any location within the plant envelope is independent of position. The other two
distribution functions assume a higher density of foliage near the centre of the
envelope. Norman & Welles (1983) assumed a uniform density of foliage within the
ellipsoidal envelopes within which individual plants are contained, but allowed for the
possibility that ellipsoids with different densities could be placed concentrically.
Variations of area density within a given plant envelope were described by specifying
the dimensions of the various ellipsoidal shells and the average foliage density within
each shell.

At the pure stand and plant community levels of organisation, Ross (1981)
suggested four types of plant dispersion: regular, semi-regular, random, and clumped.
Regular dispersion results when plants are located at the vertices of a regular
parallelogram. An example of this would be an orchard planting, or a square or
hexagonally sown crop. Semi-regular dispersion results when plants are in rows, but
spacing within the row is random, as in many agricultural crops. In random
dispersion, there is an equal probability of finding a plant at any location, and with
clumped dispersion the probability of finding a plant in a given location is related to
the presence or absence of plants in the surrounding area.

A description of canopy organisation at the pure stand or plant community level
requires, at least, a measurement of the plant population density, i.e. the number of
each species of plant per unit area. For regular or semi-regular dispersion, plant or
row spacings are needed and for regular dispersion, angles of the vertices of the
parallelogram should also be determined. For random dispersion, only the plant
population density is relevant, while for clumped dispersion, it may be possible to
assume random dispersion within clumps, and define the size and distribution of the
clumps.

As plants grow, they may begin to overlap so that it is difficult to discern the outline
of a particular plant or row of plants. The time at which this occurs is termed ‘canopy
closure'. After canopy closure, radiative exchange and heat and mass transfer
processes can be treated using one-dimensional theory. Large plant communities,
where the horizontal dimensions are much larger than the vertical dimension, can also
be treated as one-dimensional. A one-dimensional model allows dramatic
simplification of the convective and radiative exchange processes. It may then be
assumed that the phytoelements are randomly distributed in space (rather than within
the plant envelope) or grouped around shoots which may themselves be randomly
distributed in space.

Canopies which can be modelled as a series of horizontal layers, using one-
dimensional models, are important in many agricultural and forest applications, and
much of the following analysis will deal with this simplified canopy type. Such
canopies are often described in terms of two parameters, the average area density of

© Cambridge University Press www.cambridge.org



http://www.cambridge.org/0521395631
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-0-521-39563-2 - Plant Canopies: Their Growth, Form and Function
Edited by G. Russell, B. Marshall and P. G. Jarvis

Excerpt

More information

4 G.S. CAMPBELL AND J.M. NORMAN

component j, pi(z) (m2m~-3), and the angle distribution function of component j,
g(z,rj). The index j is intended to apply to leaves (J), stems (s), and reproductive parts
(f) of the plant. The variable z, represents height in the canopy, and r; represents the
direction of a normal to the canopy element (i.e. azimuth, ¢;, and inclination 6,
angles). The function, g(z,rj) represents the probability of a normal to a canopy
element falling within an angle increment, d9,d¢. It is normalised so that the integral
of g(z,r;) over all angles in a hemisphere is unity.

Integrals of these parameters are often used. The downward cumulative area index
of component j in a canopy is

Li(z) = Lh nj(z) dz oy

where £ is the height of the top of the canopy, and z the height from the ground. The
leaf area index of a canopy (L) is the total area of leaves above unit area of soil, and
is given by eqn (1) when j = [ and the lower limit of integration is equal to zero.

The integral of the angle distribution function g(z,r)), is the canopy extinction
coefficient for a beam of radiation. This integral can be thought of as the average
projected area of canopy elements or the ratio of projected to actual element area. Ross
& Nilson (1965) define a G-function, which is the average projection of canopy
elements onto a surface normal to the direction of the projection. If the projection
zenith angle is 0 and azimuth angle ¢, then the G-function is calculated from the
weighted integral of g(z,r}) over the hemisphere:

1
G@r) =5~ .[ J. 8j(z.rj) lcos(rj,r)l do;de; , @
where
cos (rj,r) = cos 6; cos 6 + sin 8; sin 8 cos(6 - 6) , ®

8; is the inclination angle of the canopy elements (angle between the vertical and a normal
to the element) and 6; is the azimuth angle of the normal to the foliage element. The
integral is taken over azimuth angles from 0 to 2 and inclination angles from O to =/2.

A different extinction coefficient, the K-function, has been used by a number of
authors (Warren—-Wilson, 1965, 1967; Anderson, 1966, 1970). It is the average
projected area of canopy elements when they are projected onto a horizontal plane. It
is related to the G-function by

K(z,r) = G(z,r)/cos 6 . 4

Simplifications and idealizations

Having established some of the fundamental parameters that can be used to
characterise canopy structure, attention is now given to simplifications and
assumptions that reduce the number of measurements needed to describe the canopy.
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The equations presented in this section will be useful in the analysis of the methods of
measurement which will be covered later. We will begin by assuming a closed,
horizontally homogeneous canopy with canopy clements randomly spaced in the
horizontal. We will therefore be concerned only with the total area and vertical
distribution of canopy elements, and the angular distribution of canopy elements. We
will assume azimuthal symmetry of the plants, since measurements (Ross, 1981;
Lemeur, 1973) indicate that canopies often approximate to this.

Many of the models that are used for calculating radiant energy interception by
canopies require information only on area index and angle distribution, but models for
the turbulent exchanges of heat and mass, and calculations of the size of penumbra
also require a knowledge of the vertical distribution of area within the canopy. Ross
(1981) presented a number of examples of area density functions, u(z), for various
canopies. Norman (1979) and Pereira & Shaw (1980) modelled u(z) as a simple
triangle (Figure 1.1). In such a case, the area density is given by

U@y =um z-z2)/(zm—21), 21£z2<2m,
u(z) = um (h—2)/(h—zm), zm<£z<h, %)

with u(z) assumed zero outside this range. The maximum leaf area density, um is
calculated from

pm = 2Lo/(h-21) . (6)

In eqns. (5) and (6), & is the canopy height, z; is the lower boundary of the canopy,
zm is the height of maximum leaf area density, and Lg is the leaf area index of the
canopy.

The relationship between downward cumulative area index and height for such a
triangular area density distribution is found by integration of eqn (1). For the
triangular distribution assumed in eqn (5) the solution is

L/Lo = (1-2/m2/{(l~zm/h)(1-2/R)), zmSz<h,

L/Lo = 1 - (z—zp)/[(h-21)(zm~21), 21S 2 S 2 N

These equations allow one to describe the spatial distribution of canopy elements
using four easily measured parameters: A, zp, z1, and Lg. Fig. 1.1 compares measured
and predicted u(z) and L(z) for a maize canopy and indicates that these simple
descriptions are adequate for many of the purposes for which spatial distribution
information is needed.

Idealized leaf angle distribution functions have been widely used to approximate
actual leaf angle distributions. Several formulae have been given for constant leaf
inclination angles (but randomly distributed azimuthal angles). If all the leaves are
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inclined at a constant angle, 8¢, then the angle distribution function is given by (Ross,
1981):

8(8)) = 8(8j — 60) sin 6, t))

where 8(8j— 6p) is the Dirac delta function, the value of which is unity when 8;=6p
and zero otherwise. A horizontal distribution results when 84 = 0, a vertical or
cylindrical distribution when 89 = n/2, and a conical distribution when 6 is between
these values. It is useful to think of the distribution of leaf angles in a canopy as being
similar to the distributions of areas on various geometric objects. For example, if the
surface area of a cone, cylinder or horizontal plane were divided into small elements,
and the angle distribution of normals to the elements were determined, the angle
distribution of these normals would form a conical, cylindrical or horizontal
distribution function.

Another useful distribution function is the spherical, or uniform distribution. The
distribution of angles in a canopy with a spherical leaf angle distribution is similar to
the distribution of angles for small surface elements of a sphere. The angle distribution
function is

£(6) =sin ;. 9

With the exception of the spherical distribution, the distribution functions described
so far are discontinuous, and not at all representative of real canopies. Lemeur (1973)
suggested simulating real canopies as weighted sums of conical canopies having a
range of inclination angles. This has been useful in providing approximations to
canopy angle distributions, but requires many parameters to quantify the inclination
angle distribution. A more general form of the spherical distribution function, which is
continuous over the entire range of leaf angles, but which has horizontal or vertical

Fig. 1.1. Triangular distribution of canopy area density and the resulting leaf area
index distribution. Data points are for a maize canopy, and are taken from Pereira &
Shaw (1980).

z/h 2/h
1.0 1.0

05 05

0 Loy
Lz}

© Cambridge University Press www.cambridge.org



http://www.cambridge.org/0521395631
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-0-521-39563-2 - Plant Canopies: Their Growth, Form and Function
Edited by G. Russell, B. Marshall and P. G. Jarvis

Excerpt

More information

Plant canopy structure 7

tendencies would be useful. The ellipsoidal distribution (Campbell, 1986) provides
such a function. It is based on the assumption that the leaf angles in a canopy are
distributed like the angles of normals to small area elements on the surface of an
ellipsoid. A single parameter, x = b/a, is required to describe the shape of the
distribution; b is the horizontal semi-axis of the ellipsoid, and a is the vertical semi-
axis. When x = 1, the ellipsoidal distribution becomes the spherical distribution
given by eqn (9). When x > 1 (oblate spheroid),

N 2 x2 sin §;
8®) " Ai(cos? o) + x2 sin? )2 a0
and when x < 1 (prolate spheroid),
2 x2 sin o;
Y = . 11
8®) A2(cos? 8j + x2 sin2 ;)2 an
Here,
Ap=14+000re)e)] g oy a2)
2e1x2
and
Ar =1+ (sinl eg)(xep) , e2=(1-x2)!72 (13)

Figure 1.2 shows examples of the ellipsoidal angle distribution function for several
values of x.

For most purposes the extinction coefficients G, or K (eqns (2) or (4)) are more
useful than the leaf angle distribution functions. These may be obtained by integrating
the distribution functions using eqn (2), but are often easier to derive by considering
the projected areas of solids having the angle distributions for the given distribution
function (Monteith & Unsworth, 1990). Thus, for a horizontal distribution, G is the

Fig. 1.2. Ellipsoidal inclination angle distributions for several values of x which are
typical of plant canopies.
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ratio of projected area of a horizontal plane to surface area of the plane, so G = cos 6.
From eqn (4), K =1 for the horizontal distribution. The G and K functions for
other angle distributions are given in Table 1.1. Extinction coefficients are plotted as
functions of zenith angle for several angle distributions in Figs. 1.3 and 1.4.

The assumption that element normals have random azimuthal distribution is in error
for species with heliotropic leaves. Shell & Lang (1975) suggest the use of the von
Mises probability density function to model leaf angle distributions for such canopies.
Mann et al. (1979) propose a much simpler, but less realistic formula based on the
assumption that all heliotropic leaves maintain a constant orientation relative to the
sun. When they are oriented perpendicular to the sun then

grp=28Crj~-n) , (14)

where r represents the zenith and azimuth angles of the solar beam.

Table 1.1. Extinction coefficients for varous angle distribution functions. All except
the heliotropic assume azimuthal symmetry. The beam zenith angle is 6, and the
element inclination angle is 6;. The parameter, x, for the ellipsoidal distribution, is the
ratio of vertical to horizontal projections of canopy elements or G(0)IG(n/2)

Horizontal inclination

G=cos @ K=1
Vertical inclination

G=2sing/n K=2tané/r
Conical inclination, 8+8<n/2,

G=cosecosej, K =cos §;

Conical inclination, 8+8>n/2
G =cos 0 cos 6 [1+2(tan f - B)/x] K = cos 8; [1+2(tan B— By/n]
cos B = 1/(tan 9 tan 6;)

Sphelrical (uniform) distribution

G=7 K=1/(2cos 6)
Heliotropic (leaves perpendicular to solar beam)

G=1 K=1/cos 8

Ellipsoidal distribution

G = (x2 cos? 6 + sin2 0)2/(4 ) K = (2 + tan2 0)72/(Ax)

A =Aj (eqn (12)) for x >1, A = A3 (eqn (13)) for x<1, A=2 for x=1
A is closely approximated by A = [x + 1.774 (x + 1.182)0-733)x
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Fig. 1.3. The extinction coefficient, G, as a function of zenith angle for x values
representing various canopy angle distributions.
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Fig. 1.4. The extinction coefficient, X, as a function of zenith angle for x values
representing various canopy angle distributions.
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Using the extinction coefficients from Table 1.1, it is possible to determine the
probability of a probe encountering 0, 1, 2,... canopy elements as it passes through a
canopy. If canopy elements are randomly dispersed in space, then the number of
contacts along a path through the canopy is a random variable which has a Poisson
distribution function (Nilson, 1971). For a canopy which approximates the Poisson
model, the probability of a probe traversing a distance through the canopy, s, in
direction, r, without intersecting any canopy elements is

Po(z,r) = expl-s u(z) G(6)] , (15
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where u(z) is the area density of canopy elements, and G(6) is the appropriate
extinction coefficient from Table 1.1. The probability of encountering n canopy
elements in a transect of length s in direction r is

Pn(z,r) = [s u(z) G(8)]" exp[—s u(z) G(8)1/n! . (16)
The mean number of intersections is
u(z,r) =s u(z) G(8) , an

and the variance of the number of contacts is equal to the mean.

For a canopy which approximates a Poisson model, relative variance, or ratio of the
variance to the mean is unity. Measurements of relative variance for a canopy are,
therefore, useful for determining how closely real canopies approximate the Poisson
model. When the relative variance for a canopy exceeds unity, the canopy is said to be
clumped or underdispersed, and if it is less than unity, the canopy is overdispersed.
Nilson (1971) discusses positive and negative binomial models to describe such
canopies. Such models have been used by Monteith (1965) and others to describe the
interaction of radiation with canopies.

The most obvious departure from a uniform dispersion of canopy elements occurs
when leaves are clumped around a shoot, or when leaves are clumped around
individual plants or rows of plants, as in a row crop, an orchard, or a sparse forest
stand. Such situations were modelled by Allen (1974), Norman & Jarvis (1975) and
Norman & Welles (1983} as clumps of vegetation, regularly or randomly dispersed,
within which the foliage distribution did follow the Poisson model. Eqns (15) and
(16) may therefore be used to model transmission and absorption of radiation by
individual clumps.

Measurement of canopy structure

We now consider some methods which can be used to obtain the canopy
parameters discussed in the previous sections. Recording of phenological data, plant
populations, locations, and dimensions, heights, and leaf numbers is straightforward,
though tedious, and will not be discussed further here. We will consider the
determination of the area density function, u(z), or its integral, L(z) and the angle
density function, g(z.8), or its integrals, G(6) or K(6). We will also discuss some
methods for determining the mean and variance of the number of intersections of a
probe with canopy elements. Techniques for determining these parameters fall into
three broad categories: direct measurement, indirect measurement, and allometric
determination. Direct measurement methods are those where area and angle
measurements are made directly on canopy elements to determine canopy parameters.
Indirect methods require a model which relates some canopy response, such as light
transmission or reflection, to the canopy structure parameters. The response is
measured under appropriate conditions, and the model is inverted to determine the
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