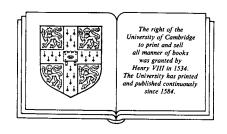


This book provides a clear and concise account of the physiology and form of the fish circulatory system. Emphasis is primarily placed on the function of the system although details of structure have been included. Following some revisionary ideas on haemodynamics, attention is focussed on the heart as the primary pump in the fish circulatory system. The fine structure and the electrical and ionic changes in the cardiac myocytes are described and the major events of the cardiac cycle are outlined. This is followed by a description of the structure of the peripheral vessels and of circulation in certain special areas such as the gills, renal portal system and the secondary blood system. Further chapters are devoted to the blood and the haemopoietic tissues and include an account of the different types of retial system that concentrate oxygen or heat in various parts of the body.

This book is up-do-date, well illustrated and written in a style comprehensible to anyone with a basic knowledge of the biological and physical sciences. Both undergraduate and graduate students of physiology, zoology and marine science will find this an invaluable reference text.


Physiology and form of fish circulation

PHYSIOLOGY AND FORM OF FISH CIRCULATION

Geoffrey H. Satchell

Department of Physiology, Otago Medical School, New Zealand

CAMBRIDGE UNIVERSITY PRESS

Cambridge New York Port Chester

Melbourne Sydney

CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

Cambridge University Press
The Edinburgh Building, Cambridge CB2 2RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org
Information on this title: www.cambridge.org/9780521395199

© Cambridge University Press 1991

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 1991

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data

Physiology and form of fish circulation / Geoffrey H. Satchell.

p. cm.

Includes bibliographical references and index.

ISBN 0 521 39519 4 (hardback)

1. Fishes – Cardiovascular system.

2. Blood - Circulation.

I. Title.

QL639.1.S28 1991

597'.011 - dc20 90-38675 CIP

ISBN-13 978-0-521-39519-9 hardback ISBN-10 0-521-39519-4 hardback

Transferred to digital printing 2006

This book is dedicated to
PROFESSOR PATRICK J. MOLLOY
Professor of Cardiac Surgery
The Otago Medical School

CONTENTS

	Preface	xv
1	Introduction	1
	Some elementary haemodynamics	2
	The Poiseuille equation	3
	Viscosity	3
	Total fluid energy	4
	Resistance	5
	Pressures on land and in water	7
	Velocity and cross sectional area	9
2	The heart	10
	Introduction	10
	The structure of cardiac muscle	11
	The dimensions of fish myocytes	12
	Sarcoplasmic reticulum, caveolae and T tubules	13
	Intercalated discs, fasciae adherentes and gap junctions	14
	Specific granules	14
	Pace-makers and pace-maker tissue	15
	The atrioventricular and ventriculoconal delays	17
	Fast conducting tracts	18
	Electrical properties of fish cardiac muscle	19
	The resting membrane potential and muscle action potential	19
	The electrocardiogram (ECG)	20
	The events of the cardiac cycle	21
	The atrium	21
	The ventricle	22
	The pericardium and pericardial fluid	24
	The bulbus arteriosus	27

x Contents

	The conus arteriosus	29
	The sinus venosus	31
	The myocardium and its blood supply	31
	The compact layer	31
	The coronary arteries; atherosclerosis and cardiac pathology	32
	The spongy layer	34
	The output of the heart	36
	Starling's law of the heart	38
	Homeometric regulation	39
3	The peripheral circulation	41
	Introduction	41
	Arteries	41
	Arterioles	43
	Capillaries	44
	Capillary beds, cross sectional area and velocity of flow	46
	Interchanges across the capillary wall; the Starling principle	47
	The two pathways through the capillary wall	48
	The effect of plasma proteins on permeability	49
	The fate of spilt plasma protein	50
	Veins	51
	Valves in veins	52
	Blood pressure in fish	53
	Reactive hyperaemia	53
	The principal blood vessels of the fish circulatory system	55
4	The blood	58
_	Haemoglobin	59
	Blood oxygen capacity	59
	The oxygenation of haemoglobin	61
	Oxygen affinity, P_{50} and environmental P_{O} ,	62
	The Bohr effect	64
	The Root effect	65
	The effect of cell haemoglobin concentration	66
	The effect of temperature	66
	The effect of nucleoside triphosphates (NTP)	67
	Acclimation and adaptation in haemoglobins	68
	Multiple haemoglobins	69
	The carriage of CO ₂ in the blood	70
	The plasma proteins	71
	Fibrinogen and the blood clotting factors	73
	Blood viscosity	75
	The relation of η to temperature	75

	Contents	xi
	The relation of η to haematocrit	76
	The relation of η to shear rate	76
	The leucocytes	77
5	Haemopoiesis and phagocytosis – the mononuclear phagocytic system	80
	The phagocytic cells of the MPS system	80
	Macrophages	81
	Haemopoietic and phagocytic organs and tissues	82
	The thymus	82
	The spleen	83
	The gut-associated tissue	84
	The kidney	85
	The organ of Leydig, the epigonal organ and the meninges	85
	The cavernous bodies	86
6	Circulation through special regions	89
	I The microcirculation of the gill	89
	Introduction	89
	The arterioarterial pathway	90
	Blood pressure and blood flow through the secondary lamellae	91
	The arteriovenous pathway	92
	II The secondary blood system	96
	III The renal portal circulation	99
	The urophysis	100
	The bladder veins	100
	Connections with the posterior intestine and rectum	101
	Afferent and efferent flows to the kidney	102
	IV Red and white muscle	103
7	Retial counter-current systems: flow-diffusion-concentration	106
	Introduction	106
	Retia that concentrate oxygen and nitrogen	107
	The retia of the swimbladder	107
	The removal of gas from the bladder	110
	The choroidal rete of the eye	112
	Retia that concentrate heat	114
	The responses of the circulatory system to temperature change in fish	
	lacking retia	114
	Acclimation to temperature	114
	The muscle retia of tuna	116
	Muscle retia in the mackerel sharks	120
	Retia that concentrate heat in the digestive organs	121
	Retia that concentrate heat in the brain and eve	123

xii Contents

8 Venous return and venous pumps	126
Venous pressure	126
The haemal arch pump	126
The branchial pump	130
The 'cardinal heart' of the myxinoids	130
The caudal pump	131
The caudal heart of the carpet shark	133
The caudal heart of the eel	135
The caudal heart of the hagfish	137
The portal heart of the hagfish	139
9 The autonomic nervous system	141
Introduction	141
The parasympathetic and sympatho-adrenal systems	142
Adrenergic and cholinergic receptors	145
Antagonism and alliance in the autonomic system	147
Atrial natriuretic peptide (ANP)	149
Vascular receptors	150
Pressure or baroreceptors	150
Hypoxia receptors	152
Gill nociceptors	153
10 The response to exercise	158
Introduction	158
The response of the heart	159
The extent of the increase in cardiac output	159
The intrinsic mechanism: the Starling response	160
The role of the cardiac vagus	160
The role of circulating catecholamines	161
The role of cardioaccelerator nerves	162
The response of the gill vasculature	163
Intrinsic dilation of gill vessels	163
Parasympathetic nerve fibres to the gills	163
The response of the gill vessels to branchial efferent adrenergic	
fibre stimulation	164
The response of the gill vessels to centrally liberated catecholamines	165
The response of the peripheral vessels	166
Intrinsic responses	166
The response to circulating catecholamines	167
The role of the autonomic vasomotor nerves	167
In summary	168
11 The response to hypoxia	170
Introduction	170

	Contents	xiii
	I Reflex responses (A) The heart	171
	The bradycardia of hypoxia	171
	Cardiorespiratory synchrony	172
	Changes in coronary blood flow	173
	I Reflex responses (B) The peripheral circulation	173
	II The intrinsic responses of the gill vessels	173
	III The central liberation of catecholamines	175
	The defence of the acidotic myocardium	175
	Catecholamines and the increase in the oxygen diffusive	157
	conductance of the gill	176
	The role of catecholamines in regulating oxygen uptake	
	by erythrocytes	177
	Effects on the efflux of H^+ from the gill	179
	Effects on carbohydrate metabolism	180
	In summary	181
12	Myxine, a speculative conclusion	183
	Introduction	183
	The heart	185
	The performance of the myxinoid heart	185
	The gross anatomy of the myxinoid heart	185
	Some features of the myxinoid cardiac cycle	186
	The blood	188
	The peripheral circulation	189
	The arterial system	189
	The venous system	190
	The sinus system and the subcutaneous sinus	190
	Pathways into the sinus system	191
	Pathways out of the subcutaneous sinus	191
	The haematocrit and volume of sinus blood	192
	What is the role of the subcutaneous sinus?	193
	Can the subcutaneous sinus be related to other subdermal	104
	vascular spaces?	194
	Some final speculations	195
	References	198
	Appendix of popular and scientific names	227
	Index	233

PREFACE

In recent years mankind has become increasingly aware of the finite nature of our natural resources. At least a third of the world's population is insufficiently nourished. At the same time much of the world's land suitable for farming is already under cultivation and it seems unlikely that the ever increasing shortfall of animal protein can be produced on farms. The oceans produce only 1–2% of the calories consumed by man and world fisheries too are fast approaching the point where all the well-defined stocks of fish are fully utilized. Perhaps an annual sustainable yield of 100 million tons of fish is a possibility; it seems unlikely that this catch can be doubled. Indeed, the growth of sea fisheries declined between 1975 and 1980. Today we still get most of our fish by hunting them with baited hooks and nets. More than a thousand years ago mankind realised that hunting was an inefficient way of obtaining meat, compared with farming it and in many countries the potential for aquaculture, i.e. the controlled cultivation and harvest of fish, is under investigation.

Aquaculture assumes that the proper management of systems, in terms of inputs of high quality water and feed, will give higher yields than unmanaged natural systems. An essential requirement of such management is an understanding of the physiology of the organisms to be cultivated. Established texts exist concerning the physiology of most of man's domesticated mammals and much of the success in raising meat from them is due to this; those wishing to know about the physiology of fish are less well provided. This book has been written to provide a comprehensive review of the physiology of the fish circulatory system. It is intended to serve the needs of students in Fisheries Biology but it will also be useful for courses in Comparative Physiology. The interrelation of structure and function are nowhere more evident than in the circulatory

xvi Preface

system, and the text and illustrations include structural descriptions where these will help the student to grasp the physiology. This necessity is the greater in fish circulatory physiology because features such as the retia mirabilia which concentrate oxygen in the eye and swimbladder and the separate and partly independent secondary blood system, do not occur in higher vertebrates and are often unknown even to circulatory physiologists.

I have borne in mind that some readers, interested in general physiology, may be unfamiliar with the scientific names of the many species of fish that have been used in circulatory studies. For this reason I have used common names, and have included the latin name only when it is first mentioned in the text. The rainbow trout Salmo gairdneri, has been the species most frequently studied by physiologists and I have referred to it simply as 'the trout'; the brown trout Salmo trutta, and brook trout Salvelinus fontinalis, I have referred to as such. I have tried to spare my readers from the arcane scholarship of the fish systematists; I am aware that the rainbow trout has, by some authorities, been placed in the genus Oncorhynchus. I am also aware that in none of the 44 papers cited in the references, which include the scientific name of the rainbow trout in the title, is the name Oncorhynchus used. At the end of the book I have included an Appendix in which both common and scientific names are given.

This book would not have been possible without the help of many people. I am quite particularly indebted to my colleagues in the Physiology Department of the Otago Medical School who have been so generous with their time; I wish specifically to thank Dr E. R. Fawcett, Dr C. P. Bolter and Dr J. P. Leader for some valuable discussion. I am indebted to Jean Clough and Douglas Sanderson for technical help with the illustrations. Professor A. P. Farrell, of Simon Fraser University, Professor R. M. G. Wells of the University of Auckland, and Dr M. E. Forster of the University of Canterbury have read much of the manuscript and have been ever helpful with criticism. Thanks are also due to Professor H. A. Bern of Berkeley, Professor K. R. Olson of the Indiana University School of Medicine and Dr P. S. Davie of Massey University, who have helped me with specific points. None of these gentlemen is to be held responsible for what I have written, but to all of them I offer my sincere thanks for their advice and encouragement. Inevitably, in a book of this length, mistakes will have been made and I would be grateful to my readers if they will write to me and let me know of them.

G. H. Satchell
Department of Physiology
Otago Medical School
January 1990