British Plant Communities

VOLUME 5

MARITIME COMMUNITIES AND VEGETATION OF OPEN HABITATS

J. S. Rodwell (editor) C. D. Pigott, D. A. Ratcliffe A. J. C. Malloch, H. J. B. Birks M. C. F. Proctor, D. W. Shimwell J. P. Huntley, E. Radford M. J. Wigginton, P. Wilkins

for the U.K. Joint Nature Conservation Committee

PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE The Pitt Building, Trumpington Street, Cambridge, United Kingdom

CAMBRIDGE UNIVERSITY PRESS

The Edinburgh Building, Cambridge CB2 2RU, UK www.cup.cam.ac.uk 40 West 20th Street, New York, NY 10011–4211, USA www.cup.org 10 Stamford Road, Oakleigh, Melbourne 3166, Australia Ruiz de Alarcón 13, 28014 Madrid, Spain

© Cambridge University Press 2000

This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2000

Printed in the United Kingdom at the University Press, Cambridge

Typeset in 9/11pt Times, in QuarkXpressTM [SE]

A catalogue record for this book is available from the British Library

ISBN 0 521 39167 9 hardback ISBN 0 521 64476 3 paperback

CONTENTS

List of figures	Х
Preface and Acknowledgements	xi
Preamble	
GENERAL INTRODUCTION	3
The background to the work	3
The scope and methods of data collection	4
The approach to data analysis	7
The style of presentation	8
Salt-marsh communities	
INTRODUCTION TO SALT-MARSH COMMUNITIES	17
The sampling and analysis of salt-marsh vegetation	17
The description of salt-marsh communities	18
Eel-grass and tassel-weed communities of tidal flats, pools and ditches	19
Lower salt-marsh communities	19
Middle salt-marsh communities	20
Upper salt-marsh communities	22
Other vegetation types on salt-marshes	22
KEY TO SALT-MARSH COMMUNITIES	23
COMMUNITY DESCRIPTIONS	
SM1 Zostera communities	
Zosterion Christiansen 1934	30
SM2 Ruppia maritima salt-marsh community	
Ruppietum maritimae Hocquette 1927	35
SM3 Eleocharis parvula salt-marsh community	
Eleocharitetum parvulae (Preuss 1911/12) Gillner 1960	36
SM4 Spartina maritima salt-marsh community	
Spartinetum maritimae (Emb. & Regn. 1926) Corillion 1953	37
SM5 Spartina alterniflora salt-marsh community	
Spartinetum alterniflorae Corillion 1953	38

S	M6	Spartina anglica salt-marsh community		
		Spartinetum townsendii (Tansley 1939) Corillion 1953	39	
S	M7	Arthrocnemum perenne stands	43	
S	SM8 Annual Salicornia salt-marsh community			
	Salicornietum europaeae Warming 1906			
S	M9	Suaeda maritima salt-marsh community		
	Suaedetum maritimae (Conrad 1935) Pignatti 1953			
S	M10	Transitional low-marsh vegetation with Puccinellia maritima, annual		
		Salicornia species and Suaeda maritima	49	
S	M11	Aster tripolium var. discoideus salt-marsh community		
		Asteretum tripolii Tansley 1939	51	
S	M12	Rayed Aster tripolium on salt-marshes	54	
S	M13	Puccinellia maritima salt-marsh community		
		Puccinellietum maritimae (Warming 1906) Christiansen 1927	55	
S	M14	Halimione portulacoides salt-marsh community		
		Halimionetum portulacoidis (Kuhnholtz-Lordat 1927) Des Abbayes		
		& Corillion 1949	64	
S	M15	Juncus maritimus-Triglochin maritima salt-marsh community	68	
S	M16	Festuca rubra salt-marsh community		
		Juncetum gerardi Warming 1906	71	
S	M17	Artemisia maritima salt-marsh community		
		Artemisietum maritimae Hocquette 1927	84	
S	M18	Juncus maritimus salt-marsh community	86	
S	M19	Blysmus rufus salt-marsh community		
		Blysmetum rufi (G. E. & G. Du Rietz 1925) Gillner 1960	90	
S	M20	Eleocharis uniglumis salt-marsh community		
		Eleocharitetum uniglumis Nordhagen 1923	92	
S	M21	Suaeda vera-Limonium binervosum salt-marsh community	94	
S	M22	Halimione portulacoides-Frankenia laevis salt-marsh community		
		Limonio vulgaris-Frankenietum laevis Géhu & Géhu-Franck 1975	97	
S	M23	Spergularia marina-Puccinellia distans salt-marsh community		
		Puccinellietum distantis Feekes (1934) 1945	99	
S	M24	Elymus pycnanthus salt-marsh community		
		Atriplici-Elymetum pycnanthi Beeftink & Westhoff 1962	102	
S	M25	Suaeda vera drift-line community		
~		Elymo pycnanthi-Suaedetum verae (Arènes 1933) Géhu 1975	104	
S	M26	Inula crithmoides on salt-marshes	107	
S	M27	Ephemeral salt-marsh vegetation with Sagina maritima	100	
G		Saginion maritimae Westhoff, van Leeuwen & Adriani 1962	109	
S	M28	<i>Elymus repens</i> salt-marsh community	110	
		Elymetum repentis maritimum Nordhagen 1940	110	
S	hing	le, strandline and sand-dune communities		
I	NTR	ODUCTION TO SHINGLE, STRANDLINE AND		
S	ANE	D-DUNE COMMUNITIES		
Т	he sau	mpling and analysis of the vegetation	115	
S	trand	line and shingle communities	116	
F	oredu	ine and mobile dune communities	117	

Fixed	dune communities	118
Dune-	slack communities	119
Other	vegetation types on sand-dunes	120
KEY	TO SHINGLE STRANDLINE AND SAND-DUNE	
COM	MUNITIES	121
COM	MUNITY DESCRIPTIONS	
SD1	Rumex crispus-Glaucium flavum shingle community	128
SD2	Honkenya peploides-Cakile maritima strandline community	136
SD3	Matricaria maritima-Galium aparine strandline community	140
SD4	<i>Elymus farctus</i> ssp. <i>boreali-atlanticus</i> foredune community	144
SD5	Leymus arenarius mobile dune community	148
SD0	Ammophila arenaria mobile dune community	153
SD7	Ammophila arenaria-Festuca ruora semi-fixed dune community	103
SD0	Ammonhila arenaria, Arrhenatherum elatius dune grassland	1/4
SD3	Carex arenaria dune community	194
SD10	Carex arenaria-Cornicularia aculeata dune community	201
SD12	Carex arenaria-Festuca ovina-Agrostis canillaris dune grassland	201
SD12	Sagina nodosa-Bryum pseudotriauetrum dune-slack community	214
SD14	Salix repens-Campylium stellatum dune-slack community	218
SD15	Salix repens-Calliergon cuspidatum dune-slack community	224
SD16	Salix repens-Holcus lanatus dune-slack community	230
SD17	Potentilla anserina-Carex nigra dune-slack community	236
SD18	Hippophae rhamnoides dune scrub	242
SD19	Phleum arenarium-Arenaria serpyllifolia dune annual community	
	Tortulo-Phleetum arenariae (Massart 1908) BrBl. & de Leeuw 1936	247
Mari	time cliff communities	
INTE	RODUCTION TO MARITIME CLIFF COMMUNITIES	
The sa	mpling of maritime cliff vegetation	253
Data a	inalysis and the description of maritime cliff communities	254
Mariti	me cliff crevice and ledge vegetation	255
Mariti	me grasslands of sea cliffs	256
Vegeta	ation of sea-bird cliffs	257
KEY	TO MARITIME CLIFF COMMUNITIES	258
СОМ	MUNITY DESCRIPTIONS	
MC1	Crithmum maritimum-Spergularia rupicola maritime rock-crevice	
	community	
	Crithmo-Spergularietum rupicolae Géhu 1964	264
MC2	Armeria maritima-Ligusticum scoticum maritime rock-crevice	
	community	268
MC3	Rhodiola rosea-Armeria maritima maritime cliff-ledge community	270
MC4	Brassica oleracea maritime cliff-ledge community	272
MC5	Armeria maritima-Cerastium diffusum ssp. diffusum maritime	
	therophyte community	273

MC6	Atriplex prostrata-Beta vulgaris ssp. maritima sea-bird cliff community		
	Atriplici-Betetum maritimae JM. & J. Géhu 1969	281	
MC7	Stellaria media-Rumex acetosa sea-bird cliff community	284	
MC8	Festuca rubra-Armeria maritima maritime grassland	286	
MC9 Festuca rubra-Holcus lanatus maritime grassland			
MC10	Festuca rubra-Plantago spp. maritime grassland	300	
MC11	Festuca rubra-Daucus carota ssp. gummifer maritime grassland	305	
MC12	Festuca rubra-Hyacinthoides non-scripta maritime bluebell community	310	
Veget	ation of open habitats		
INTR	CODUCTION TO VEGETATION OF OPEN HABITATS	315	
The sa	mpling of weed vegetation and other assemblages of open habitats	315	
Data a	nalysis and the description of weed and other communities	316	
Arable	e weed and track-side communities of light, less-fertile acid soils	317	
Arable	e weed and wasteland communities of fertile loams and clays	318	
Arable	e weed communities of light, limey soils	319	
Gatew	ays, tracksides and courtyard vegetation	320	
Tall-he	erb weed communities	320	
Inunda	ation communities	321	
Dwarf	-rush communities of ephemeral ponds	322	
Crevic	e, scree and spoil vegetation	323	
KEY	TO VEGETATION OF OPEN HABITATS	325	
СОМ	MUNITY DESCRIPTIONS		
OV1	Viola arvensis-Aphanes microcarpa community	336	
OV2	Briza minor-Silene gallica community	338	
OV3	Papaver rhoeas-Viola arvensis community		
	Papaveretum argemones (Libbert 1933) Kruseman & Vlieger 1939	340	
OV4	Chrysanthemum segetum-Spergula arvensis community		
	Spergulo-Chrysanthemetum segetum (BrBl. & De Leeuw 1936)		
	R.Tx. 1937	342	
OV5	Digitaria ischaemum-Erodium cicutarium community	345	
OV6	Cerastium glomeratum-Fumaria muralis ssp. boraei community	347	
OV7	Veronica persica-Veronica polita community		
	Veronico-Lamietum hybridi Kruseman & Vlieger 1939	351	
OV8	Veronica persica-Alopecurus myosuroides community		
	Alopecuro-Chamomilletum recutitae Wasscher 1941	353	
OV9	Matricaria perforata-Stellaria media community	355	
OV10	Poa annua-Senecio vulgaris community	360	
OV11	Poa annua-Stachys arvensis community	365	
OV12	Poa annua-Myosotis arvensis community	368	
OV13	Stellaria media-Capsella bursa-pastoris community	370	
OV14	Urtica urens-Lamium amplexicaule community	374	
OV15	Anagallis arvensis-Veronica persica community		
	Kickxietum spuriae Kruseman & Vlieger 1939	376	
OV16	Papaver rhoeas-Silene noctiflora community		
	Papaveri-Sileneetum noctiflori Wasscher 1941	380	

Contents

OV17	Reseda lutea-Polygonum aviculare community	
	Descurainio-Anchusetum arvensis Silverside 1977	382
OV18	Polygonum aviculare-Chamomilla suaveolens community	384
OV19	Poa annua-Matricaria perforata community	387
OV20	Poa annua-Sagina procumbens community	
	Sagino-Bryetum argentii Diemont, Sissingh & Westhoff 1940	392
OV21	Poa annua-Plantago major community	395
OV22	Poa annua-Taraxacum officinale community	398
OV23	Lolium perenne-Dactylis glomerata community	401
OV24	Urtica dioica-Galium aparine community	406
OV25	Urtica dioica-Cirsium arvense community	410
OV26	<i>Epilobium hirsutum</i> community	414
OV27	<i>Epilobium angustifolium</i> community	419
OV28	Agrostis stolonifera-Ranunculus repens community	
	Agrostio-Ranunculetum repentis Oberdorfer et al. 1967	425
OV29	Alopecurus geniculatus-Rorippa palustris community	
	Ranunculo-Alopecuretum geniculati R.Tx. (1937) 1950	428
OV30	Bidens tripartita-Polygonum amphibium community	
	Polygono-Bidentetum tripartitae Lohmever in R.Tx. 1950	430
OV31	Rorinna palustris-Filaginella uliginosa community	432
OV32	<i>Myosotis scornioides-Ranunculus sceleratus</i> community	
0.02	Ranunculetum scelerati R Tx 1950 ex Passarge 1959	434
OV33	Polygonum lanathifolium-Poa annua community	436
OV34	Allium schoenoprasum-Plantago maritima community	438
OV35	Lythrum portula-Rammeulus flammula community	441
OV36	Lythrum hyssonifolia- luncus bufonius community	443
OV37	Festuca ovina-Minuartia verna community	115
0137	Minuartio-Thlasnietum alnestris Koch 1932	446
OV38	Gymnocarnium robertianum-Arrhenatherum elatius community	-+0
0150	Gymnocarpietum robertianae (Kuhn 1937) R Tx 1937	450
OV39	Asplenium trichomanes, Asplenium ruta-muraria community	450
0,37	Aspleniatum trichomano-rutae-murariae R Tx 1937	453
OV 40	Asplanium virida Cystontaris fragilis community	-155
0140	Asplenium viride-Cystopteris fragilis community	
	Aspiento Virtuis-Cystopiertaetam fraguis (Kunn 1959) Obordorfor 1040	159
OV41	Pariotaria diffusa community	430
0141	Parietaria augusa community	461
01/12	Cumbalaria muralis community	401
0142	Cymbalaria murails community	161
	Cymodiarleium muralis Gols 1900	404
INDE	X OF SYNONYMS TO MARITIME COMMUNITIES	
AND	VEGETATION OF OPEN HABITATS	467
mp		107
INDE	X OF SPECIES IN MARITIME COMMUNITIES	
AND	VEGETATION OF OPEN HABITATS	473
BIBL	IOGRAPHY	485
PHYT	TOSOCIOLOGICAL CONSPECTUS OF BRITISH	
PLAN	NT COMMUNITIES	498

FIGURES

Figure 1. Standard NVC sample card 6

Figure 2. Distribution of samples available for analysis 7

- Figure 3. Floristic table for NVC community MG5 *Centaurea nigra-Cynosurus cristatus* grassland 10
- Figure 4. Distribution of samples available from saltmarshes 18

Figure 5. Distribution of vegetation types characterised from salt-marshes 19

Figure 6. Generalised salt-marsh zonations in the south-east and west of Britain 21

Figure 7. Distribution of mud-flat and saltmarsh vegetation in the Cromarty Firth, Scotland 32

Figure 8. Zonation on an eroding salt-marsh 58 Figure 9. Complex of upper marsh communities at

Bolton-le-Sands, Morecambe Bay 75

Figure 10. Distribution of sample available from sand dunes 116

Figure 11. Distribution of vegetation types characterised from sand-dunes 117

Figure 12. Simplified zonation of vegetation types on strandline, embryo, semi-fixed and fixed dunes in southern Britain 159

Figure 13. Vegetation pattern in the machair landscape of the Outer Isles 179

Figure 14. Zonation of vegetation types on a dune hinterland with withdrawal of grazing and management for golf 191 Figure 15. Sand-dune and transitions to salt-marsh at Scolt Head Island, Norfolk 203 Figure 16. Slacks and swamps in the dune system at Crymlyn Burrows, South Wales 226 Figure 17. Distribution of samples available from sea cliffs 254 Figure 18. Distribution of vegetation types characterised from sea cliffs 254 Figure 19. The influence of salt-spray on sea-cliff zonations 255 Figure 20. Vegetation of sea-bird cliffs at St Govan's Chapel, Stackpole 282 Figure 21. Vegetation pattern at Gurnard's Head, Cornwall 288 Figure 22. Sea-cliff zonations with Festuca-Holcus grassland 294 Figure 23. Zonations showing the impact of grazing on sea-cliff vegetation in north-west Britain 301 Figure 24. Sequence of vegetation types on a limestone cliff in southern England 306 Figure 25. Vegetation pattern on an ill-maintained urban street 402 Figure 26. Inundation communities on flood banks of the river Lune, north Lancashire 429

GENERAL INTRODUCTION

The background to the work

It is a tribute to the insight of our early ecologists that we can still return with profit to Types of British Vegetation which Tansley (1911) edited for the British Vegetation Committee as the first coordinated attempt to recognise and describe different kinds of plant community in this country. The contributors there wrote practically all they knew and a good deal that they guessed, as Tansley himself put it, but they were, on their own admission, far from comprehensive in their coverage. It was to provide this greater breadth, and much more detailed description of the structure and development of plant communities, that Tansley (1939) drew together the wealth of subsequent work in The British Islands and their Vegetation, and there must be few ecologists of the generations following who have not been inspired and challenged by the vision of this magisterial book.

Yet, partly because of its greater scope and the uneven understanding of different kinds of vegetation at the time, this is a less systematic work than Types in some respects: its narrative thread of explication is authoritative and engaging, but it lacks the light-handed framework of classification which made the earlier volume so very attractive, and within which the plant communities might be related one to another, and to the environmental variables which influence their composition and distribution. Indeed, for the most part, there is a rather self-conscious avoidance of the kind of rigorous taxonomy of vegetation types that had been developing for some time elsewhere in Europe, particularly under the leadership of Braun-Blanquet (1928) and Tüxen (1937). The difference in the scientific temperament of British ecologists that this reflected, their interest in how vegetation works, rather than in exactly what distinguishes plant communities from one another, though refreshing in itself, has been a lasting hindrance to the emergence in this country of any consensus as to how vegetation ought to be described, and whether it ought to be classified at all.

In fact, an impressive demonstration of the value of the traditional phytosociological approach to the

description of plant communities in the British Isles was published in German after an international excursion to Ireland in 1949 (Braun-Blanquet & Tüxen 1952), but more immediately productive was a critical test of the techniques among a range of Scottish mountain vegetation by Poore (1955a, b, c). From this, it seemed that the really valuable element in the phytosociological method might be not so much the hierarchical definition of plant associations, as the meticulous sampling of homogeneous stands of vegetation on which this was based, and the possibility of using this to provide a multidimensional framework for the presentation and study of ecological problems. Poore & McVean's (1957) subsequent exercise in the description and mapping of communities defined using this more flexible approach then proved just a prelude to the survey of huge tracts of mountain vegetation by McVean & Ratcliffe (1962), work sponsored and published by the Nature Conservancy (as it then was) as Plant Communities of the Scottish Highlands. Here, for the first time, was the application of a systematised sampling technique across the vegetation cover of an extensive and varied landscape in mainland Britain, with assemblages defined in a standard fashion from full floristic data, and interpreted in relation to a complex of climatic, edaphic and biotic factors. The opportunity was taken, too, to relate the classification to other European traditions of vegetation description, particularly that developed in Scandinavia (Nordhagen 1943, Dahl 1956).

McVean & Ratcliffe's study was to prove a continual stimulus to the academic investigation of our mountain vegetation and of abiding value to the development of conservation policy, but their methods were not extended to other parts of the country in any ambitious sponsored surveys in the years immediately following. Despite renewed attempts to commend traditional phytosociology, too (Moore 1962), the attraction of this whole approach was overwhelmed for many by the heated debates that preoccupied British plant ecologists in the 1960s, on the issues of objectivity in the sampling and sorting of data, and the respective values of classification or ordination as analytical techniques. Others, though, found it perfectly possible to integrate multivariate analysis into phytosociological survey, and demonstrated the advantage of computers for the display and interpretation of ecological data, rather than the simple testing of methodologies (Ivimey-Cook & Proctor 1966). New generations of research students also began to draw inspiration from the Scottish and Irish initiatives by applying phytosociology to the solving of particular descriptive and interpretative problems, such as variation among British calcicolous grasslands (Shimwell 1968a), heaths (Bridgewater 1970), rich fens (Wheeler 1975) and salt-marshes (Adam 1976), the vegetation of Skye (Birks 1969), Cornish cliffs (Malloch 1970) and Upper Teesdale (Bradshaw & Jones 1976). Meanwhile, too, workers at the Macaulay Institute in Aberdeen had been extending the survey of Scottish vegetation to the lowlands and the Southern Uplands (Birse & Robertson 1976, Birse, 1980, 1984).

With an accumulating volume of such data and the appearance of uncoordinated phytosociological perspectives on different kinds of British vegetation, the need for an overall framework of classification became ever more pressing. For some, it was also an increasingly urgent concern that it still proved impossible to integrate a wide variety of ecological research on plants within a generally accepted understanding of their vegetational context in this country. Dr Derek Ratcliffe, as Scientific Assessor of the Nature Conservancy's Reserves Review from the end of 1966, had encountered the problem of the lack of any comprehensive classification of British vegetation types on which to base a systematic selection of habitats for conservation. This same limitation was recognised by Professor Sir Harry Godwin, Professor Donald Pigott and Dr John Phillipson who, as members of the Nature Conservancy, had been asked to read and comment on the Reserves Review. The published version, A Nature Conservation Review (Ratcliffe 1977), was able to base the description of only the lowland and upland grasslands and heaths on a phytosociological treatment. In 1971, Dr Ratcliffe, then Deputy Director (Scientific) of the Nature Conservancy, in proposals for development of its research programme, drew attention to 'the need for a national and systematic phytosociological treatment of British vegetation, using standard methods in the field and in analysis/classification of the data'. The intention of setting up a group to examine the issue lapsed through the splitting of the Conservancy which was announced by the Government in 1972. Meanwhile, after discussions with Dr Ratcliffe, Professor Donald Pigott of the University of Lancaster proposed to the Nature Conservancy a programme of research to provide a systematic and comprehensive classification of British plant communities. The new

Nature Conservancy Council included it as a priority item within its proposed commissioned research programme. At its meeting on 24 March 1974, the Council of the British Ecological Society welcomed the proposal. Professor Pigott and Dr Andrew Malloch submitted specific plans for the project and a contract was awarded to Lancaster University, with sub-contractual arrangements with the Universities of Cambridge, Exeter and Manchester, with whom it was intended to share the early stages of the work. A coordinating panel was set up, jointly chaired by Professor Pigott and Dr Ratcliffe, and with research supervisors from the academic staff of the four universities. Drs John Birks. Michael Proctor and David Shimwell joining Dr Malloch. Later, Dr Tim Bines replaced Dr Ratcliffe as nominated officer for the NCC, then Lynne Farrell, Margaret Palmer and Dr John Hopkins.

With the appointment of Dr John Rodwell as full-time coordinator of the project, based at Lancaster, the National Vegetation Classification began its work officially in August 1975. Shortly afterwards, four full-time research assistants took up their posts, one based at each of the universities: Mr Martin Wigginton, Miss Jacqueline Paice (later Huntley), Mr Paul Wilkins and Dr Elaine Grindey (later Radford). These remained with the project until the close of the first stage of the work in 1980, sharing with the coordinator the tasks of data collection and analysis in different regions of the country, and beginning to prepare preliminary accounts of the major vegetation types. Drs Michael Lock and Hilary Birks and Miss Katherine Hearn were also able to join the research team for short periods of time. After the departure of the research assistants, the supervisors supplied Dr Rodwell with material for writing the final accounts of the plant communities and their integration within an overall framework. With the completion of this charge in 1989, the handover of the manuscript for publication by the Cambridge University Press began.

The scope and methods of data collection

The contract brief required the production of a classification with standardised descriptions of named and systematically arranged vegetation types and, from the beginning, this was conceived as something much more than an annotated list of interesting and unusual plant communities. It was to be comprehensive in its coverage, taking in the whole of Great Britain apart from Northern Ireland, and including vegetation from all natural, semi-natural and major artificial habitats. Around the maritime fringe, interest was to extend up to the start of the truly marine zone, and from there to the tops of our remotest mountains, covering virtually all terrestrial plant communities and those of brackish and fresh waters, except where non-vascular plants were the dominants. Only short-term leys were specifically excluded and, though care was to be taken to sample more pristine and long-established kinds of vegetation, no undue attention was to be given to assemblages of rare plants or to especially rich and varied sites. Thus widespread and dull communities from improved pastures, plantations, run-down mires and neglected heaths were to be extensively sampled, together with the vegetation of paths, verges and recreational swards, walls, man-made waterways and industrial and urban wasteland.

For some vegetation types, we hoped that we might be able to make use, from early on, of existing studies, where these had produced data compatible in style and quality with the requirements of the project. The contract envisaged the abstraction and collation of such material from both published and unpublished sources, and discussions with other workers involved in vegetation survey, so that we could ascertain the precise extent and character of existing coverage and plan our own sampling accordingly. Systematic searches of the literature and research reports revealed many data that we could use in some way and, with scarcely a single exception, the originators of such material allowed us unhindered access to it. Apart from the very few classic phytosociological accounts, the most important sources proved to be postgraduate theses, some of which had already amassed very comprehensive sets of samples of certain kinds of vegetation or from particular areas, and these we were generously permitted to incorporate directly.

Then, from the NCC and some other government agencies, or from individuals who had been engaged in earlier contracts for them, there were some generally smaller bodies of data, occasionally from reports of extensive surveys, more usually from investigations of localised areas. Published papers on particular localities, vegetation types or individual species also provided small numbers of samples. In addition to these sources, the project was able to benefit from and influence ongoing studies by institutions and individuals, and itself to stimulate new work with a similar kind of approach among university researchers, NCC surveyors, local flora recorders and a few suitably qualified amateurs. An initial assessment and annual monitoring of floristic and geographical coverage were designed to ensure that the accumulating data were fairly evenly spread, fully representative of the range of British vegetation, and of a consistently high quality. Full details of the sources of the material, and our acknowledgements of help, are given in the preface and introduction to each volume.

Our own approach to data collection was simple and pragmatic, and a brief period of training at the outset ensured standardisation among the team of five staff who were to carry out the bulk of the sampling for the project in the field seasons of the first four years, 1976–9. The thrust of the approach was phytosociological in its emphasis on the systematic recording of floristic information from stands of vegetation, though these were chosen solely on the basis of their relative homogeneity in composition and structure. Such selection took a little practice, but it was not nearly so difficult as some critics of this approach imply, even in complex vegetation, and not at all mysterious. Thus, crucial guidelines were to avoid obvious vegetation boundaries or unrepresentative floristic or physiognomic features. No prior judgements were necessary about the identity of the vegetation type, nor were stands ever selected because of the presence of species thought characteristic for one reason or another, nor by virtue of any observed uniformity of the environmental context.

From within such homogeneous stands of vegetation, the data were recorded in quadrats, generally square unless the peculiar shape of stands dictated otherwise. A relatively small number of possible sample sizes was used, determined not by any calculation of minimal areas, but by the experienced assessment of their appropriateness to the range of structural scale found among our plant communities. Thus plots of 2×2 m were used for most short, herbaceous vegetation and dwarf-shrub heaths, 4×4 m for taller or more open herb communities, sub-shrub heaths and low woodland field layers, 10×10 m for species-poor or very tall herbaceous vegetation or woodland field layers and dense scrub, and 50×50 m for sparse scrub, and woodland canopy and understorey. Linear vegetation, like that in streams and ditches, on walls or from hedgerow field layers, was sampled in 10 m strips, with 30 m strips for hedgerow shrubs and trees. Quadrats of 1×1 m were rejected as being generally inadequate for representative sampling, although some bodies of existing data were used where this, or other sizes different from our own, had been employed. Stands smaller than the relevant sample size were recorded in their entirety, and mosaics were treated as a single vegetation type where they were repeatedly encountered in the same form, or where their scale made it guite impossible to sample their elements separately.

Samples from all different kinds of vegetation were recorded on identical sheets (Figure 1). Priority was always given to the accurate scoring of all vascular plants, bryophytes and macrolichens (*sensu* Dahl 1968), a task which often required assiduous searching in dense and complex vegetation, and the determination of difficult plants in the laboratory or with the help of referees. Critical taxa were treated in as much detail as possible though, with the urgency of sampling, certain groups, like the brambles, hawkweeds, eyebrights and dandelions, often defeated us, and some awkward bryophytes and crusts of lichen squamules had to be referred to just a genus. It is more than likely, too, that some very diminutive mosses and especially hepatics escaped notice in the field and, with much sampling taking place in summer, winter annuals and vernal perennials might have been missed on occasion. In general, nomenclature for vascular plants follows *Flora Europaea* (Tutin *et al.* 1964 *et seq.*) with Corley & Hill (1981) providing the authority for bryophytes and Dahl (1968) for lichens. Any exceptions to this, and details of any difficulties with sampling or identifying particular plants, are given in the introductions to each of the major vegetation types.

A quantitative measure of the abundance of every taxon was recorded using the Domin scale (*sensu* Dahl & Hadač 1941), cover being assessed by eye as a vertical projection on to the ground of all the live, above-ground parts of the plants in the quadrat. On this scale:

Cover of 91–100% is recorded as Domin	10
76–90%	9
51-75%	8
34-50%	7
26-33%	6
11-25%	5
4-10%	4
(with many individuals	3
<4% with several individuals	2
with few individuals	1

In heaths, and more especially in woodlands, where the vegetation was obviously layered, the species in the

		NVC record	sheet 10/81
Location	Grid reference	Region	Author
Site and vegetation description		Date	Sample no.
		Altitude	Slope
		m	0
		Aspect	Soil depth cm
		Stand area	Sample area
		m x m	m x m
		Layers: mea	un height
		Layers: cov	rer
		% 9	6 % %
		Geology	
Species list		Soil p	profile

Figure 1. Standard NVC sample card.

different elements were listed separately as part of the same sample, and any different generations of seedling or saplings distinguished. A record was made of the total cover and height of the layers, together with the cover of any bare soil, litter, bare rock or open water. Where existing data had been collected using percentage cover or the Braun-Blanquet scale (Braun-Blanquet 1928), it was possible to convert the abundance values to the Domin scale, but we had to reject all samples where DAFOR scoring had been used, because of the inherent confusion within this scale of abundance and frequency.

Each sample was numbered and its location noted using a site name and full grid reference. Altitude was estimated in metres from the Ordnance Survey 1:50000 series maps, slope estimated by eye or measured using a hand level to the nearest degree, and aspect measured to the nearest degree using a compass. For terrestrial samples, soil depth was measured in centimetres using a probe, and in many cases a soil pit was dug sufficient to allocate the profile to a major soil group (sensu Avery 1980). From such profiles, a superficial soil sample was removed for pH determination as soon as possible thereafter using an electric meter on a 1:5 soil:water paste. With aquatic vegetation, water depth was measured in centimetres wherever possible, and some indication of the character of the bottom noted. Details of bedrock and superficial geology were obtained from Geological Survey maps and by field observation.

This basic information was supplemented by notes, with sketches and diagrams where appropriate, on any aspects of the vegetation and the habitat thought likely to help with interpretation of the data. In many cases, for example, the quantitative records for the species were filled out by details of the growth form and patterns of dominance among the plants and an indication of how they related structurally one to another in finely organised layers, mosaics or phenological sequences within the vegetation. Then, there was often valuable information about the environment to be gained by simple observation of the gross landscape or microrelief, the drainage pattern, signs of erosion or deposition and patterning among rock outcrops, talus slopes or stony soils. Often, too, there were indications of biotic effects including treatments of the vegetation by man, with evidence of grazing or browsing, trampling, dunging, mowing, timber extraction or amenity use. Sometimes, it was possible to detect obvious signs of ongoing change in the vegetation, natural cycles of senescence and regeneration among the plants, or successional shifts consequent upon invasion or particular environmental impacts. In many cases, also, the spatial relationships between the stand and neighbouring vegetation types were highly informative and, where a number of samples were taken from an especially varied or complex site, it often proved useful to draw a map

indicating how the various elements in the pattern were interrelated.

The approach to data analysis

At the close of the programme of data collection, we had assembled, through the efforts of the survey team and by the generosity of others, a total of about 35000 samples of the same basic type, originating from more than 80% of the 10×10 km grid squares of the British mainland and many islands (Figure 2). Thereafter began a coordinated phase of data processing, with each of the four universities taking responsibility for producing preliminary analyses from data sets crudely separated into major vegetation types - mires, calcicolous grasslands, sand-dunes and so on - and liaising with the others where there was a shared interest. We were briefed in the contract to produce accounts of discrete plant communities which could be named and mapped, so our attention was naturally concentrated on techniques of multivariate classification, with the help of computers to sort the very numerous and often complex samples on the basis of their similarity. We were concerned to employ reputable methods of analysis, but the considerable experience of the team in this kind of work led us to resolve at the outset to concentrate on the ecological

Figure 2. Distribution of samples available for analysis.

integrity of the results, rather than on the minutiae of mathematical technique. In fact, each centre was free to some extent to make its own contribution to the development of computer programs for the task, Exeter concentrating on Association and Information Analysis (Ivimey-Cook *et al.* 1975), Cambridge and Manchester on cluster analysis (Huntley *et al.* 1981), Lancaster on Indicator Species Analysis, later Twinspan (Hill *et al.* 1975, Hill 1979), a technique which came to form the core of the VESPAN package, designed, using the experience of the project, to be particularly appropriate for this kind of vegetation survey (Malloch 1988).

Throughout this phase of the work, however, we had some important guiding principles. First, this was to be a new classification, and not an attempt to employ computational analysis to fit groups of samples to some existing scheme, whether phytosociological or otherwise. Second, we were to produce a classification of vegetation types, not of habitats, so only the quantitative floristic records were used to test for similarity between the samples, and not any of the environmental information: this would be reserved, rather, to provide one valuable correlative check on the ecological meaning of the sample groups. Third, no samples were to be rejected at the outset because they appeared nondescript or troublesome, nor removed during the course of analysis or data presentation where they seemed to confuse an otherwise crisply-defined result. Fourth, though, there was to be no slavish adherence to the products of a single analyses using arbitrary cut-off points when convenient numbers of end-groups had been produced. In fact, the whole scheme was to be the outcome of many rounds of sorting, with data being pooled and reanalysed repeatedly until optimum stability and sense were achieved within each of the major vegetation types. An important part of the coordination at this stage was to ensure roughly comparable scales of definition among the emerging classifications and to mesh together the work of the separate centres so as to avoid any omissions in the processing or wasteful overlaps.

With the departure from the team of the four research assistants in 1980, the academic supervisors were left to continue the preparation of the preliminary accounts of the vegetation types for the coordinator to bring to completion and integrate into a coherent whole. Throughout the periods of field work and data analysis, we had all been conscious of the charge in the contract that the whole project must gain wide support among ecologists with different attitudes to the descriptive analysis of vegetation. Great efforts were therefore made to establish a regular exchange of information and ideas through the production of progress reports, which gained a wide circulation in Britain and overseas, via contacts with NCC staff and those of other research agencies, and the giving of papers at scientific meetings. This meant that, as we approached the presentation of the results of the project, we were well informed about the needs of prospective users, and in a good position to offer that balance of concise terminology and broadly-based description that the NCC considered would commend the work, not only to their own personnel, but to others engaged in the assessment and management of vegetation, to plant and animal ecologists in universities and colleges, and to those concerned with land use and planning.

The style of presentation

The presentation of our results thus gives priority to the definition of the vegetation types, rather than to the construction of a hierarchical classification. We have striven to characterise the basic units of the scheme on roughly the same scale as a Braun-Blanquet association, but these have been ordered finally not by any rigid adherence to the higher phytosociological categories of alliance, order and class, but in sections akin to the formations long familiar to British ecologists. In some respects, this is a more untidy arrangement, and even those who find the general approach congenial may be surprised to discover what they have always considered to be, say, a heath, grouped here among the mires, or to search in vain for what they are used to calling 'marsh'. The five volumes of the work gather the major vegetation types into what seem like sensible combinations and provide introductions to the range of communities included: aquatic vegetation, swamps and tall-herb fens; grasslands and montane vegetation; heaths and mires; woodlands and scrub; salt-marsh, sand-dune and seacliff communities and weed vegetation. The order of appearance of the volumes, however, reflects more the exigencies of publishing than any ecological viewpoint.

The bulk of the material in the volumes comprises the descriptions of the vegetation types. After much consideration, we decided to call the basic units of the scheme by the rather non-committal term 'community', using 'sub-community' for the first-order sub-groups which could often be distinguished within these, and 'variant' in those very exceptional cases where we have defined a further tier of variation below this. We have also refrained from erecting any novel scheme of complicated nomenclature for the vegetation types, invoking existing names where there is an undisputed phytosociological synonym already in widespread use, but generally using the Latin names of one, two or occasionally three of the most frequent species. Among the mesotrophic swards, for example, we have distinguished a Centaurea nigra-Cynosurus cristatus grassland, which is fairly obviously identical to what Braun-Blanquet & Tüxen (1952) called Centaureo-Cynosuretum cristati, and within which, from our data, we have characterised three subcommunities. For the convenience of shorthand description and mapping, every vegetation type has been given

a code letter and number, so that *Centaurea-Cynosurus* grassland for example is MG5, MG referring to its place among the mesotrophic grasslands. The *Galium verum* sub-community of this vegetation type, the second to be distinguished within the description, is thus MG5b.

Vegetation being as variable as it is, it is sometimes expedient to allocate a sample to a community even though the name species are themselves absent. What defines a community as unique are rarely just the plants used to name it, but the particular combination of frequency and abundance values for all the species found in the samples. It is this information which is presented in summary form in the floristic tables for each of the communities in the scheme. Figure 3, for example, shows such a table for MG5 Centaurea-Cynosurus grassland. Like all the tables in the volumes, it includes such vascular plants, bryophytes and lichens as occur with a frequency of 5% or more in any one of the sub-communities (or, for vegetation types with no sub-communities, in the community as a whole). Early tests showed that records of species below this level of frequency could be largely considered as noise, but cutting off at any higher level meant that valuable floristic information was lost. The vascular species are not separated from the cryptogams on the table though, for woodlands and scrub, the vegetation is sufficiently complex for it to be sensible to tabulate the species in a way which reflects the layered structure.

Every table has the frequency and abundance values arranged in columns for the species. Here, 'frequency' refers to how often a plant is found on moving from one sample of the vegetation to the next, irrespective of how much of that species is present in each sample. This is summarised in the tables as classes denoted by the Roman numerals I to V: 1-20% frequency (that is, up to one sample in five)=I, 21-40%=II, 41-60%=III, 61-80% = IV and 81-100% = V. We have followed the usual phytosociological convention of referring to species of frequency classes IV and V in a particular community as its constants, and in the text usually refer to those of class III as common or frequent species, of class II as occasional and of class I as scarce. The term 'abundance' on the other hand, is used to describe how much of a plant is present in a sample, irrespective of how frequent or rare it is among the samples, and it is summarised on the tables as bracketed numbers for the Domin ranges, and denoted in the text using terms such as dominant, abundant, plentiful and sparse. Where there are sub-communities, as in this case, the data for these are listed first, with a final column summarising the records for the community as a whole.

The species are arranged in blocks according to their pattern of occurrence among the different sub-communities and within these blocks are generally ordered by decreasing frequency. The first group, *Festuca rubra* to *Trifolium pratense* in this case, is made up of the community constants, that is those species which have an overall frequency IV or V. Generally speaking, such plants tend to maintain their high frequency in each of the sub-communities, though there may be some measure of variation in their representation from one to the next: here, for example, *Plantago lanceolata* is somewhat less common in the last sub-community than the first two, with *Holcus lanatus* and a number of others showing the reverse pattern. More often, there are considerable differences in the abundance of these most frequent species: many of the constants can have very high covers, while others are more consistently sparse, and plants which are not constant can sometimes be numbered among the dominants.

The last group of species on a table, Ranunculus acris to Festuca arundinacea here, lists the general associates of the community, sometimes referred to as companions. These are plants which occur in the community as a whole with frequencies of III or less, though sometimes they rise to constancy on one or other of the sub-communities, as with R. acris in this vegetation. Certain of the companions are consistently common overall like Rumex acetosa, some are more occasional throughout as with Rhinanthus minor, some are always scarce, for example Calliergon cuspidatum. Others, though, are more unevenly represented, like R. acris, Heracleum sphondylium or Poa trivialis, though they do not show any marked affiliation to any partiucular sub-community. Again, there can be marked variation in the abundance of these associates: Rumex acetosa, for example, though quite frequent, is usually of low cover, while Arrhenatherum elatius and some of the bryophytes, though more occasional, can be patchily abundant; Alchemilla xanthochlora is both uncommon among the samples and sparse within them.

The intervening blocks comprise those species which are distinctly more frequent within one or more of the sub-communities than the others, plants which are referred to as preferential, or differential where their affiliation is more exclusive. For example, the group *Lolium perenne* to *Juncus inflexus* is particularly characteristics of the first sub-community of *Centaurea-Cynosurus* grassland, although some species, like *Leucanthemum vulgare* and, even more so, *Lathyrus pratensis*, are more strongly preferential than others, such as *Lolium*, which continues to be frequent in the second sub-community. Even uncommon plants can be good preferentials, as with *Festuca pratensis* here: it is not often found in *Centaurea-Cynosurus* grassland but, when it does occur, it is generally in this first sub-type.

The species group *Galium verum* to *Festuca ovina* helps to distinguish the second sub-community from the first, though again there is some variation in the strength of association between these preferentials and the vegetation type, with *Achillea millefolium* being less markedly

Floristic table MG5

	a	b	с	MG5
Festuca rubra Cynosurus cristatus Lotus corniculatus Plantago lanceolata Holcus lanatus Dactylis glomerata Trifolium repens Centaurea nigra Agrostis capillaris Anthoxamlum odoratum Trifolium pratense	$\begin{array}{c} V \ (1{-}8) \\ V \ (1{-}8) \\ V \ (1{-}7) \\ V \ (1{-}7) \\ IV \ (1{-}7) \\ IV \ (1{-}6) \\ IV \ (1{-}7) \\ IV \ (1{-}5) \end{array}$	$\begin{array}{c} V (2-8) \\ V (1-7) \\ V (1-5) \\ V (1-5) \\ IV (1-6) \\ IV (1-6) \\ IV (1-6) \\ IV (1-7) \\ IV (1-7) \\ IV (1-8) \\ IV (1-4) \\ IV (1-4) \end{array}$	$\begin{array}{c} V (2-7) \\ V (1-7) \\ V (2-4) \\ IV (1-4) \\ V (1-5) \\ V (1-6) \\ V (1-6) \\ V (1-4) \\ V (2-4) \\ V (3-8) \\ V (1-4) \\ IV (1-3) \end{array}$	V (1-8) V (1-8) V (1-7) V (1-7) IV (1-6) IV (1-7) IV (1-7) IV (1-9) IV (1-5) IV (1-8) IV (1-8) IV (1-5)
Lolium perenne Bellis perennis Lathyrus pratensis Leucanthemum vulgare Festuca pratensis Knautia arvensis Juncus inflexus		III (1-7) II (1-7) I (1-3) I (1-3) I (2-5)	I (2–3) I (4) I (1) II (1–3) I (1)	$\begin{array}{c} \mathrm{III} \ (1-8) \\ \mathrm{II} \ (1-7) \\ \mathrm{II} \ (1-5) \\ \mathrm{II} \ (1-5) \\ \mathrm{I} \ (1-3) \\ \mathrm{I} \ (1-5) \\ \mathrm{I} \ (4) \\ \mathrm{I} \ (3-5) \end{array}$
Galium verum Trisetum flavescens Achillea millefolium Carex flacca Sanguisorba minor Koeleria macrantha Agrostis stolonifera Festuca ovina	$ \begin{array}{c} I \ (1-6) \\ II \ (1-4) \\ III \ (1-6) \\ I \ (1-4) \\ I \ (1-4) \\ I \ (4) \\ I \ (1) \\ I \ (1-7) \end{array} $	$\begin{array}{c} V \ (1-6) \\ IV \ (1-6) \\ V \ (1-4) \\ II \ (1-4) \\ II \ (3-5) \\ II \ (1-6) \end{array}$	II (1-3) III (1-4) I (1) I (6)	$\begin{matrix} II & (1-6) \\ III & (1-6) \\ II & (1-6) \\ I & (1-4) \\ I & (3-5) \\ I & (1-6) \\ I & (1-7) \\ I & (1-7) \\ I & (1-6) \end{matrix}$
Prunella vulgaris Leontodon autumnalis Luzula campestris Danthonia decumbens Potentilla erecta Succisa pratensis Pimpinella saxifraga Stachys betonica Carex caryophyllea Conopodium majus	$\begin{array}{c} \text{III} \ (1-4) \\ \text{II} \ (1-5) \\ \text{II} \ (1-4) \\ \text{I} \ (2-5) \\ \text{I} \ (1-4) \\ \text{I} \ (1-4) \\ \text{I} \ (1-4) \\ \text{I} \ (1-4) \\ \text{I} \ (1-5) \\ \text{I} \ (1-4) \\ \text{I} \ (1-4) \\ \text{I} \ (1-4) \\ \text{I} \ (1-4) \end{array}$	$\begin{array}{c} \text{III} \ (1-4) \\ \text{II} \ (1-3) \\ \text{II} \ (1-6) \\ \text{I} \ (1-3) \\ \text{I} \ (1-3) \\ \text{I} \ (1-3) \\ \text{I} \ (1-5) \\ \text{I} \ (1-4) \\ \text{I} \ (1-4) \\ \text{I} \ (1-3) \\ \text{I} \ (1-5) \\ \end{array}$	$\begin{array}{c} \text{IV} \ (1-3) \\ \text{IV} \ (1-4) \\ \text{IV} \ (1-4) \\ \text{V} \ (2-5) \\ \text{V} \ (1-4) \\ \text{V} \ (1-4) \\ \text{III} \ (1-4) \\ \text{III} \ (1-4) \\ \text{III} \ (1-2) \\ \text{II} \ (2-3) \end{array}$	$\begin{array}{c} \text{III} \ (1-4) \\ \text{III} \ (1-5) \\ \text{III} \ (1-6) \\ \text{I} \ (1-6) \\ \text{I} \ (1-4) \\ \text{I} \ (1-5) \end{array}$
Ranuculus acris Rumex acetosa Hypochoeris radicata Ramuculus bulbosus Taraxacum officinale agg. Brachythecium rutabulum Cerastium fontanum Leontodon hispidus Rhinanthus minor Briza media Heracleum spondylium Trifolium dubium Primula veris Arrhenatherum elatius Cirsium arvense Eurhynchium praelongum Rhytidiadelphus squarrosus Poa pratensis Poa trivialis Veronica chamaedrys Alopecurus pratensis Poa trivialis Veronica chamaedrys Alopecurus pratensis Poartensis Portica cracca Bromus hordeaceus hordeaceus Phleum pratense pratense Juncus effusus Phleum pratense bertolonii Callergon cuspidatum Ramunculus repens Pseudoscleropodium purum Ophioglossum vulgatum Silaum silaus Agrimonia eupatoria Alchemilla glabra Alchemilla glabra	$\begin{array}{c} \mathrm{IV} \ (\mathrm{I-4}) \\ \mathrm{III} \ (\mathrm{I-4}) \\ \mathrm{III} \ (\mathrm{I-5}) \\ \mathrm{III} \ (\mathrm{I-5}) \\ \mathrm{III} \ (\mathrm{I-6}) \\ \mathrm{IIII} \ (\mathrm{I-6}) \\ \mathrm{IIIII \ (\mathrm{I-6}) } \\ \mathrm{IIIIII \ (\mathrm{I-6}) } \\ IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII$	$\begin{array}{c} \text{II} \ (1-4) \\ \text{III} \ (1-4) \\ \text{III} \ (1-4) \\ \text{II} \ (2-4) \\ \text{III} \ (1-5) \\ \text{III} \ (1-4) \\ \text{III} \ (1-5) \\ \text{II} \ (2-4) \\ \text{II} \ (1-5) \\ \text{II} \ (2-4) \\ \text{II} \ (1-7) \\ \text{II} \ (1-4) \\ \text{II} \ (1-5) \\ \text{II} \ (1-3) \\ \text{I} \ (2-5) \\ \text{I} \ (3) \\ (3) \\ \text{I} \ (3) \ (3) \\ (3) \ (3) \\ (3) \ (3) \ (3) \\ (3) \ (3) \ (3) \ (3) \\ (3) \ ($	$\begin{array}{c} \mathrm{IV} \ (2-4) \\ \mathrm{III} \ (1-3) \\ \mathrm{III} \ (1-4) \\ \mathrm{III} \ (1-2) \\ \mathrm{III} \ (1-3) \\ \mathrm{III} \ (2) \\ \mathrm{II} \ (1-3) \\ \mathrm{III} \ (1-2) \\ \mathrm{IIII} \ (1-2) \\ \mathrm{IIII} \ (1-2) \\ \mathrm{IIIII \ (1-2) } \\ \mathrm{IIIII \ (1-2) } \\ \mathrm{IIIIII \ (1-2) } \\ \mathrm{IIIIII \ (1-2) } \\ \mathrm{IIIIIII \ (1-2) } \\ \mathrm{IIIIIII \ (1-2) } \\ \mathrm{IIIIIIII \ (1-2) } \\ \mathrm{IIIIIIIII \ (1-2) } \\ \mathrm{IIIIIIII \ (1-2) } \\ IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII$	$\begin{array}{c} \text{III} & (1-4) \\ \text{III} & (1-4) \\ \text{III} & (1-5) \\ \text{III} & (1-7) \\ \text{III} & (1-6) \\ \text{III} & (1-6) \\ \text{II} & (1-6) \\ \text{II} & (1-5) \\ \text{II} & (1-6) \\ \text{II} & (1-5) \\ \text{II} & (1-6) \\ \text{II} & (1-5) \\ \text{II} & (1-7) \\ \text{II} & (1-6) \\ \text{II} & (1-8) \\ \text{II} & (1-4) \\ \text{II} & (1-6) \\ \text{II} & (1-5) \\ \text{II} & (1-5) \\ \text{II} & (1-5) \\ \text{II} & (1-5) \\ \text{II} & (1-3) \\ \text{II} & (1-3) \\ \text{II} & (1-4) \\ \text{II} & (1-5) \\ \text$

Figure 3. Floristic table for NVC community MG5 Centaurea nigra-Cynosurus cristatus grassland.

diagnostic than Trisetum flavescens and, particularly, G. verum. There are also important negative features, too, because, although some plants typical of the first and third sub-communities, such as Lolium and Prunella vulgaris, remain quite common here, the disappearance of others, like Lathyrus pratensis, Danthonia decumbens, Potentilla erecta and Succisa pratensis is strongly diagnostic. Similarly, with the third sub-community, there is that same mixture of positive and negative characteristics, and there is, among all the groups of preferentials, that same variation in abundance as is found among the constants and companions. Thus, some plants which can be very marked preferentials are always of rather low cover, as with Prunella, whereas others, like Agrostis stolonifera, though diagnostic at low frequency, can be locally plentiful.

For the naming of the sub-communities, we have generally used the most strongly preferential species, not necessarily those most frequent in the vegetation type. Sometimes, sub-communities are characterised by no floristic features over and above those of the community as a whole, in which case there will be no block of preferentials on the table. Usually, such vegetation types have been called Typical, although we have tried to avoid this epithet where the sub-community has a very restricted or eccentric distribution.

The tables organise and summarise the floristic variation which we encountered in the vegetation sampled: the text of the community accounts attempts to expound and interpret it in a standardised descriptive format. For each community, there is first a synonymy section which lists those names applied to that particular kind of vegetation where it has figured in some form or another in previous surveys, together with the name of the author and the date of ascription. The list is arranged chronologically, and it includes references to important unpublished studies and to accounts of Irish and Continental associations where these are obviously very similar. It is important to realise that very many synonyms are inexact, our communities corresponding to just part of a previously described vegetation type, in which case the initials p.p. (for pro parte) follow the name, or being subsumed within an older, more broadly-defined unit. Despite this complexity, however, we hope that this section, together with that on the affinities of the vegetation (see below), will help readers translate our scheme into terms with which they may have been long familiar. A special attempt has been made to indicate correspondence with popular existing schemes and to make sense of venerable but ill-defined terms like 'herb-rich meadow', 'oakwood' or 'general salt-marsh'.

There then follow a list of the constant species of the community, and a list of the rare vascular plants, bryophytes and lichens which have been encountered in the particular vegetation type, or which are reliably known to occur in it. In this context, 'rare' means, for vascular plants, an A rating in the *Atlas of the British Flora* (Perring & Walters 1962), where scarcity is measured by occurrence in vice-counties, or inclusion on lists compiled by the NCC of plants found in less than one hundred 10×10 km squares. For bryophytes, recorded presence in under 20 vice-counties has been used as a criterion (Corley & Hill 1981), with a necessarily more subjective estimate for lichens.

The first substantial section of text in each community description is an account of the physiognomy, which attempts to communicate the feel of the vegetation in a way which a tabulation of data can never do. Thus, the patterns of frequency and abundance of the different species which characterise the community are here filled out by details of the appearance and structure, variation in dominance and the growth form of the prominent elements of the vegetation, the physiognomic contribution of subordinate plants, and how all these components relate to one another. There is information, too, on important phenological changes that can affect the vegetation through the seasons and an indication of the structural and floristic implications of the progress of the life cycle of the dominants, any patterns of regeneration within the community or obvious signs of competitive interaction between plants. Much of this material is based on observations made during sampling, but it has often been possible to incorporate insights from previous studies, sometimes as brief interpretative notes, in other cases as extended treatments of, say, the biology of particular species such as Phragmites australis or Ammophila arenaria, the phenology of winter annuals or the demography of turf perennials. We trust that this will help demonstrate the value of this kind of descriptive classification as a framework for integrating all manner of autecological studies (Pigott 1984).

Some indication of the range of floristic and structural variation within each community is given in the discussion of general physiognomy, but where distinct sub-communities have been recognised these are each given a descriptive section of their own. The sub-community name is followed by any synonyms from previous studies, and by a text which concentrates on pointing up the particular features of composition and organisation which distinguish it from the other sub-communities.

Passing reference is often made in these portions of the community accounts to the ways in which the nature of the vegetation reflects the influence on environmental factors upon it, but extended treatment of this is reserved for a section devoted to the habitat. An opening paragraph here attempts to summarise the typical conditions which favour the development and maintenance of the vegetation types, and the major factors which control floristic and structural variation within it. This is followed by as much detail as we have at the present time about the impact of particular climatic, edaphic and biotic variables on the community, or as we suppose to be important to its essential character and distribution. With climate, for example, reference is very frequently made to the influence on the vegetation of the amount and disposition of rainfall through the year, the variation in temperature season by season, differences in cloud cover and sunshine, and how these factors interact in the maintenance of regimes of humidity, drought or frosts. Then, there can be notes of effects attributable to the extent and duration of snow-lie or to the direction and strength of winds, especially where these are icy or salt-laden. In each of these cases, we have tried to draw upon reputable sources of data for interpretation, and to be fully sensitive to the complex operation of topographic climates, where features like aspect and altitude can be of great importance, and of regional patterns, where concepts like continental, oceanic, montane and maritime climates can be of enormous help in understanding vegetation patterns.

Commonly, too, there are interactions between climate and geology that are best perceived in terms of variations in soils. Here again, we have tried to give full weight to the impact of the character of the landscape and its rocks and superficials, their lithology and the ways in which they weather and erode in the processes of pedogenesis. As far as possible, we have employed standardised terminology in the description of soils, trying at least to distinguish the major profile types with which each community is associated, and to draw attention to the influence of its floristics and structure of processes like leaching and podzolisation, gleying and waterlogging, parching, freeze-thaw and solifluction, and inundation by fresh- or salt-waters.

With very many of the communities we have distinguished, it is combinations of climatic and edaphic factors that determine the general character and possible range of the vegetation, but we have often also been able to discern biotic influences, such as the effects of wild herbivores or agents of dispersal, and there are very few instances where the impact of man cannot be seen in the present composition and distribution of the plant communities. Thus, there is frequent reference to the role which treatments such as grazing, mowing and burning have on the floristics and physiognomy of the vegetation, to the influence of manuring and other kinds of eutrophication, of draining and re-seeding for agriculture, of the cropping and planting of trees, of trampling or other disturbance, and of various kinds of recreation.

The amount and quality of the environmental information on which we have been able to draw for interpreting such effects has been very variable. Our own sampling provided just a spare outline of the physical and edaphic conditions at each location, data which we have summarised where appropriate at the foot of the

floristic tables; existing sources of samples sometimes offered next to nothing, in other cases very full soil analysis or precise specifications of treatments. In general, we have used what we had, at the risk of great unevenness of understanding, but have tried to bring some shape to the accounts by dealing with the environmental variables in what seems to be their order of importance, irrespective of the amount of detail available, and by pointing up what can already be identified as environmental threats. We have also benefited by being able to draw on the substantial literature on the physiology and reproductive biology of individual species, on the taxonomy and demography of plants, on vegetation history and on farming and forestry techniques. Sometimes, this information provides little more than a provisional substantiation of what must remain for the moment an interpretive hunch. In other cases, it has enabled us to incorporate what amount to small essays on, for example, the past and present role of Tilia cordata in our woodlands with variation in climate, the diverse effects of dunging by rabbit, sheep and cattle on calcicolous swards, or the impact of burning on Calluna-Arctostaphylos heath on different soils in a boreal climate. Debts of this kind are always acknowledged in the text and, for our part, we hope that the accounts indicate the benefits of being able to locate experimental and historical studies on vegetation within the context of an understanding of plant communities (Pigott 1982).

Mention is often made in the discussion of the habitat of the ways in which stands of communities can show signs of variation in relation to spatial environmental differences, or the beginnings of a response to temporal changes in conditions. Fuller discussion of zonations to other vegetation types follows, with a detailed indication of how shifts in soil, microclimate or treatment affect the composition and structure of each community, and descriptions of the commonest patterns and particularly distinctive ecotones, mosaics and site types in which it and any sub-communities are found. It has also often been possible to give some fuller and more ordered account of the ways in which vegetation types can change through time, with invasion of newly available ground, the progression of communities to maturity, and their regeneration and replacement. Some attempt has been made to identify climax vegetation types and major lines of succession, but we have always been wary of the temptation to extrapolate from spatial patterns to temporal sequences. Once more, we have tried to incorporate the results of existing observational and experimental studies, including some of the classic accounts of patterns and processes among British vegetation, and to point up the great advantages of a reliable scheme of classification as a basis for the monitoring and management of plant communities (Pigott 1977).

Throughout the accounts, we have referred to particular sites and regions wherever we could, many of these visited and sampled by the team, some the location of previous surveys, the results of which we have now been able to redescribe in the terms of the classification we have erected. In this way, we hope that we have begun to make real a scheme which might otherwise remain abstract. We have also tried in the habitat section to provide some indications of how the overall ranges of the vegetation types are determined by environmental conditions. A separate paragraph on distribution summarises what we know of the ranges of the communities and sub-communities, then maps show the location, on the 10×10 km national grid, of the samples that are available to us for each. Much ground, of course, has been thinly covered, and sometimes a dense clustering of samples can reflect intensive sampling rather than locally high frequency of a vegetation type. However, we believe that all the maps we have included are accurate in their general indication of distributions, and we hope that this exercise might encourage the production of a comprehensive atlas of British plant communities.

The last section of each community description considers the floristic affinities of the vegetation types in the scheme, and expands on any particular problems of synonymy with previously described assemblages. Here, too, reference is often given to the equivalent or most closely-related association in Continental phytosociological classifications and an attempt made to locate each community in an existing alliance. Where the fuller account of British vegetation that we have been able to provide necessitates a revision of the perspective on European plant communities as a whole, some suggestions are made as to how this might be achieved.

Meanwhile, each reader will bring his or her own needs and commitment to this scheme and perhaps be dismayed by its sheer size and apparent complexity. For those requiring some guidance as to the scope of each volume and the shape of that part of the classification with which it deals, the introductions to the major vegetation types will provide an outline of the variation and how it has been treated. The contents page will then give directions to the particular communities of interest. For readers less sure of the identity of the vegetation types with which they are dealing, a key is provided to each major group of communities which should enable a set of similar samples organised into a constancy table to be taken through a series of questions to a reasonably secure diagnosis. The keys, though, are not infallible short cuts to identification and must be used in conjunction with the floristic tables and community descriptions. An alternative entry to the scheme is provided by the species index which lists the occurrences of all taxa in the communities in which we have recorded them. There is also an index of synonyms which should help readers find the equivalents in our classification of vegetation types already familiar to them.

Finally, we hope that whatever the needs, commitments or even prejudices of those who open these volumes, there will be something here to inform and challenge everyone with an interest in vegetation. We never thought of this work as providing the last word on the classification of British plant communities: indeed, with the limited resources at our disposal, we knew it could offer little more than a first approximation. However, we do feel able to commend the scheme as essentially reliable. We hope that the broad outlines will find wide acceptance and stand the test of time, and that our approach will contribute to setting new standards of vegetation description. At the same time, we have tried to be honest about admitting deficiencies of coverage and recognising much unexplained floristic variation, attempting to make the accounts sufficiently open-textured that new data might be readily incorporated and ecological puzzles clearly seen and pursued. For the classification is meant to be not a static edifice, but a working tool for the description, assessment and study of vegetation. We hope that we have acquitted ourselves of the responsibilities of the contract brief and the expectations of all those who have encouraged us in the task, such that the work might be thought worthy of standing in the tradition of British ecology. Most of all, we trust that our efforts do justice to the vegetation which, for its own sake, deserves understanding and care.