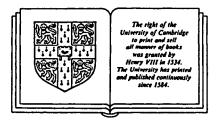


Materials and the designer



Materials

and the designer

E. H. CORNISH

Formerly Manager Materials Projects, Standard Telecommunication Laboratories Ltd

CAMBRIDGE UNIVERSITY PRESS

Cambridge New York Port Chester Melbourne Sydney

> Published by the Press Syndicate of the University of Cambridge The Pitt Building, Trumpington Street, Cambridge CB2 1RP 40 West 20th Street, New York, NY 10011, USA 10 Stamford Road, Oakleigh, Melbourne 3166, Australia

© Cambridge University Press 1987

First published 1987 First paperback edition 1990

British Library cataloguing in publication data

Cornish, Eric H.
Materials and the designer.

1. Materials 2. Design, Industrial
I. Title
620.1'1 TA403.6

Library of Congress cataloguing in publication data

Cornish, E. H.

Materials and the designer.

Bibliography.

Includes index.

1. Materials. 2. Engineering design. 1. Title.

TA403.C644 1986 620.1'1 86-6087

ISBN 0 521 30734 1 hardback ISBN 0 521 38580 6 paperback

Transferred to digital printing 1999

Contents

	n c	
	Preface	X
	Introduction	1
	The need to know	1
	The product in its environment	2
	The materials cycle	3
	The role of processing	4
	Materials' structures	5
	Selecting materials	6
1	The impact of design on manufacturing industry	7
1.1	The role of design in product manufacturing	7
1.2	The designer's contribution to the requirements of industry	11
1.3	Management functions associated with design	14
1.4	Design activity in a Company	15
1.5	The designer as a focus of knowledge	17
1.6	Attributes of good product design	19
1.7	Materials as a factor in design	21
2	Expertise required for the design process	23
2.1	The importance of mechanical design	23
2.2	Cost-effective materials and manufacturing processes	24
2.3	The challenge of materials selection	25
2.4	Materials aspects of design	27
2.5	Data bases and computer aids for materials selection	31
3	An introduction to materials	34
3.1	Properties and performance limitations	38
3.2	Salient features of main classes of materials	43
4	Properties of metals and alloys	55
4.1	Aspects of selecting metals	59
1.2	Characteristics of specific metals	67
1.3	Welding	73

vi	Contents	
4.4	Machining	74
4.5	Surface conversion	78
5	Properties of ceramics	79
5.1	•	79
5.2	Varieties available	80
5.3	Comparative properties	82
5.4	• •	85
5.5		87
5.6		89
5.7	Design factors	90
6	Properties of polymers	91
6.1	Types and varieties available	93
6.2	Elastomers	95
6.3	Cellular materials	96
6.4	Plastic film	97
6.5	Costs relative to other materials	97
6.6	General properties of plastic materials	99
6.7	Some specific aspects of plastics	105
6.8	Fabrication routes	113
6.9		119
6.10	Some recent developments in polymers	122
7	Properties of composites	124
7.1	Definition of composite types	124
7.2	Reinforcements in common use	127
7.3	Advantages and limitations of composites	129
7.4	Design considerations	134
7.5	Production techniques	137
7.6	Reinforced plastics	139
8	Materials' performance in service	143
8.1	Metals	144
8.2		148
8.3	•	151
8.4	Composites	161
8.5	Flammability	164
9	Finishes and coatings as protective systems	182
9.1		187
9.2		188
9.3	Finishes for modifying surfaces	193
9.4	Metal based surface layers	196

9.5 Ceramic finishes

9.6 Organic (paint) finishes

204

205

	Contents	vii
10	Materials reliability and service life	208
10.1	Predicting service life	208
10.2	Design decisions	212
10.3	The lessons of failure in service	213
10.4	Failure of materials	214
10.5	Product quality	216
10.6	Use of statistics	218
11	Factors controlling the selection of substitute materials	219
11.1	Materials are not totally interchangeable	219
11.2	Reasons for substitution	220
11.3	Product improvement	223
11.4	Success and failure	224
11.5	Strategic materials and economics	225
11.6	Effects on production processes	228
12	Material forming processes and design	230
12.1	Metals	230
	Polymers	235
	Composites	237
	Ceramics	238
12.5	Newer production possibilities	239
13	Sources of information on materials	241
13.1	Introduction	241
	Location of documents	241
13.3	Published information	242
13.4	Current research	252
13.5	Further information sources	256
13.6	Materials suppliers	259
14	Standards and materials	261
14.1	Types of standards	261
14.2	Standards available	262
14.3	Codes of Practice	263
14.4	References on Standards	263
	References	265
	Bibliography	272
	Index	274

Preface

This book does not aspire to discuss pure materials science topics, nor to offer comprehensive numerical design data for each material, although reference is made to underlying materials science concepts wherever opportune. It does, however, seek to identify those parameters which must be considered when selecting materials for use in engineering applications. Emphasis is put on the needs of manufacturing industry, which is defined for present purposes as involved in production of prefabricated parts and components intended for civil, domestic, marine, military, aerospace and chemical processing applications. The decision has been taken to omit all aspects of the building and construction industry, so no reference is made to concrete, timber, bitumens, soil and masonry.

The chapter on the impact of design on manufacturing industry is intended to demonstrate how correct selection of materials in terms of their performance, availability and cost, together with exploitation of available production capability, will enhance the profitability of a commercial operation.

Having embarked upon a design study, it is necessary for the expertise and judgement of the design engineer to be coordinated with those of other experts to produce the most effective result. The chapter on the design process draws attention to the variety of knowledge and advice which the designer needs to draw upon to make materials choices with a high level of confidence.

A large number of metallic and non-metallic materials, each with a wide spectrum of properties, is available to the designer. The salient features of the main materials families, and their typical properties and performance limitations in service are outlined as a guide to further, in-depth, study. Surface coatings and finishes, as systems for protection in adverse service environments, are also considered.

Guidelines by which degradation and failure mechanisms, induced by chemical and mechanical agencies, can be identified and assessed to provide

x Preface

economic safety margins in use, are briefly presented, and existing world standards for quality assurance and product control are reviewed.

Factors controlling the selection of alternative materials in an existing product design receive attention, being perhaps necessitated by new market forces as a result of changes in service requirements or in production processes. Some economic and strategic factors related to the supply of raw materials are discussed, and a concept of an 'envelope of properties' is elaborated to delineate areas of acceptability for materials alternatives. This concept seeks to assist in making changes to the choice of materials for modifying an existing product.

The chapter on the impact of available production processes on design possibilities draws together some of the more important processes applied to materials, to remind the designer how an in-depth knowledge of these can affect his concept of a properly engineered and cost-effective product.

Summarising, it may be claimed that the product designer ideally needs a broad knowledge of the materials technology world, with its ramifications of materials sources, materials products supply, the behaviour of materials under different processing conditions, the factors involved in substituting one material for another, the question of preferred production methods for different product configurations, and many other aspects of the subject. These topics are addressed in the various chapters of this book to ensure that the person responsible for materials selection has an adequate understanding of the nature of specialist advice which he may and should seek, and that he has sufficient knowledge of materials to frame relevant questions and, most importantly, to understand the experts' answers, be he building a safety-pin or a road bridge.

Apologies and acknowledgements

For simplicity the term 'he, the designer' has been used throughout the book, being intended to apply to any individuals of either sex who, although not necessarily trained in materials-related disciplines, have responsibility for selecting materials used in a manufactured article.

After a lifetime of work with materials, this author, as would any other, finds it impossible specifically to acknowledge all the sources of detailed information which have been drawn upon. Much use has been made of data drawn from day-to-day reading, as shown in the list of References, and peer discussion, coupled with that built-in mental awareness of the main truths about materials which is the residuum of student days. Most of the references cited are to specific papers, and as such are recorded in the References list. Occasionally however, a text listed in the Bibliography is known to contain specific data under discussion: the author and year are cited as for references. So an author 'missing' from the References will be found listed in the Bibliography.

A special mention should be made of my colleague from the British National

Preface xi

Committee on Materials, the late Nigel C.W. Judd. It was he who provided the motivation for this book and I am indebted to his memory for the many fruitful discussions and interchanges of information which we had before his untimely death.

Thanks are also due to STL Ltd for providing considerable assistance, to Mrs J.R. Newcomb for her untiring work with the word processor, and to Mrs J.M. Trentham for producing the illustrations. Mr M.V. Coleman, Dr M.J. Folkes, Mr P. Green, Mr A.C. Harman, Mr F. Kerry, Mr P.J. Lesley, Dr K. Paul, Mr J. Pemberton, Mr S. Tattersall, Mr K. Taylor, and Mr V. White deserve the author's thanks for making valuable comments on various chapters.

Some of the concepts in the book, notably views of material flammability and of materials 'envelopes of properties', are considered to be novel, but doubtless, like almost everything else, they have been developed before, forgotten and then reinvented. While acknowledging, in Figures, Tables and References, at least some published authorities, the author begs the reader's indulgence by admitting that countless scientists have shaped his thoughts, and so he thanks the world at large. Specifically, however, acknowledgements are due to E.I. DuPont de Nemours for permission to reproduce Figure 3.6, to the Institution of Production Engineers for permission to reproduce Figures 11.1, 11.2 and 11.3, and to Mr K Thomas of the Institution of Structural Engineers Materials and Components Study Group for the concept and much of the content of Table 3.4.

However, the author can claim something specifically for himself; that is, full responsibility for the absence of that information which should be included in an ideal book reflecting an ideal world. Such omissions are entirely his own responsibility and reflect that sad lack of omniscience and of available pages which so many authors share.

In parts of this book, mention is made of trade names, specific materials and proprietary processes. Their inclusion does not imply that the publishers or the author have tested them, and they thus cannot endorse what may well be worthy additions to the designer's armoury.

E.H. Cornish 1986.