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Colliding waves
in general relativity

Valeria Ferrari
International Center for Relativistic Astrophysics - ICRA,
Dipartimento di Fisica “G. Marconi,”
Universitd di Roma, Rome, Italy

1. Introduction

The gravitational interaction between waves is a phenomenon in which
the richness and the originality of the theory of general relativity are ex-
plicitly manifested. It became apparent in 1970-71 when Khan, Penrose!
and Szekeres? found the first exact solutions describing the collision of
pure gravitational waves: it was shown that when two plane gravita-
tional waves with collinear polarization, and with a step or an impulsive
profile collide, their subsequent interaction culminates in the creation of
a curvature singularity, an event unpredicted by any linearized version of
the theory of gravity. As we shall see, this is only a particular result, al-
though probably the most remarkable, of the interaction of gravitational
waves. Similar behaviors are also manifested when waves of a different
nature collide. This is due to the fact that any kind of energy gener-
ates a gravitational field. As a consequence, when two arbitrary waves
collide, a gravitational interaction will accompany, as a side effect, the
interaction which is peculiar to the particular fields considered. These
gravitational effects, though negligible to some extent, are nevertheless
relevant from a theoretical point of view. In this lecture we shall investi-
gate the main features of the scattering of plane waves in terms of exact
solutions of Einstein’s equations. Therefore, let us start by explaining
what gravitational plane waves are and how to find exact solutions of
Einstein’s equations describing their interaction. The methods I shall
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describe can be generalized when one is dealing with other kinds of null
fields, as for example, electromagnetic or massless scalar fields.

2. Colliding wave solutions

A gravitational plane wave is a region of spacetime confined between two
parallel planes, in which the curvature is different from zero and which
propagates through the spacetime, in the direction normal to the planes,
at the speed of light. This is usually referred to as a “sandwich wave.”
When only one wave is present, the spacetime is flat before and after
the passage of the wave and curved inside the sandwich. Since we are
considering vacuum solutions, the Ricci tensor is zero everywhere. More
rigorously, a plane wave is a non-flat solution of Einstein’s equations in
vacuum, which admits a five parameter group of motions,3 namely the
same symmetries of an electromagnetic wave.

When the thickness of the sandwich tends to zero, the Riemann ten-
sor remains finite on the hypersurface perpendicular to the direction of
propagation and the Ricci tensor remains zero everywhere, the sand-
wich wave becomes an impulsive wave, and the corresponding Riemann
tensor becomes proportional to a §-function:

Rgé'y ~ 6(2} - t),

where z is the direction of propagation. This is the most simple model of
a gravitational plane wave. It is apparent that these waves are idealized
models. Firstly they are plane, thus they represent to some approxima-
tion, the field far from radiating sources. Secondly, they have an infinite
wavefront. This assumption certainly imposes severe restrictions on the
global behavior of the solutions which describe their collision. How-
ever, these solutions provide interesting information on the role played
by the nonlinearity of Einstein’s equations in these scattering processes,
and they should act as a guide for the investigation of more realistic
situations.

As previously mentioned, the first exact solutions describing the in-
teraction of gravitational waves date back to 1970 and 1971. In 1972
Szekeres? showed how to state the problem of colliding waves as an initial
data problem, in the case of collinear polarization. In 1977 Nutku and
Halil® generalized the Khan-Penrose solution to the case when the im-
pulsive waves have non-collinear polarization. In 1984 much attention
has again been focused on these problems, due to an alternative ap-
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proach suggested by Chandrasekhar and the author.® We showed that
the mathematical theory of colliding waves can be constructed in a way
similar to the mathematical theory of black holes, due to certain recip-
rocal relations existing between stationary axisymmetric spacetimes and
spacetimes with two spacelike Killing vectors. The application of this
theory, whose main features I shall briefly outline, allows us to find exact
solutions describing the region where two plane waves interact, and it
has been applied successfully during the past five years in obtaining a
variety of new solutions.

Let us assume that two plane waves travel along the same direction z,
one against the other. Due to the symmetry of the problem, the metric
is expected to depend on t + z only, and to be independent of y and
z, which are assumed to be the coordinates on the wavefront. In other
words, we require that the solution possess two spacelike Killing vectors,
%’ a%" which span the wavefront. With these assumptions, a suitable
choice of the gauge allows the metric to be cast in the following form:

It - EJ?

§Y)]
L -Ep [dz+,.w_—-E_*'>dy]2) ,

i = 1 [ - 1425 - v o [lgh] o

1-|EP? I1- EJ?

where f = f(t £ z) is real and E = E(t £ ) is a complex function.
Thus, by the exclusive use of the symmetries, the number of unknown
components of the metric tensor is reduced to 3. E and f must be found
by solving Einstein’s field equations in vacuum. Since we are considering
waves travelling along the same direction, namely the “head-on” collision
between plane waves, one might question whether or not this assumption
is too restrictive. The answer is no, since if the two waves propagate
along arbitrary directions, it is always possible to make a transformation
to a frame of reference in which they appear to approach each other from
exact opposite spatial directions. Therefore, the case of the head-on
collision we are considering is not restrictive.

It is possible to demonstrate that the entire set of Einstein’s equations
splits into two blocks. E satisfies a non-linear equation:

- {[a-2E], - [1-2)E.] } =

(2)
—2B* {(1-2)(B,)* ~ (1 -*)(E,)}
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and the function f satisfies a set of linear, first order, partial differen-
tial equations, whose driving terms are given by the derivatives of the

function E:
X 4 _ 2 . .
T i T D EAR R Of
3 1
UF, +2F, = 1t —— 3)
4

e VB R4 (1 22 2
(1—|EP)? [(A-)E P+ (1 NE ],

where

f
Vi-t’
Once we know a solution for the function E, the linear system for f can
be solved by quadrature. Thus the heart of the problem is the solution
of the equation for E. The function E is complex, therefore the physical
problem we are solving possesses two degrees of freedom corresponding
to the two states of polarization of the colliding waves.

A point should be stressed. The equation satisfied by E is already
known in a different context as the Ernst equation. In fact, in 1968
Ernst”® showed that if one is looking for stationary axisymmetric solu-
tions of Einstein’s equations, the fundamental components of the metric
can be combined into a single complex function which satisfies the Ernst
equation, indeed. In that case, of course, the function E will depend on
the radial distance from the center, and on the polar angle 8. However
the equation is, formally, the exact same equation (2) derived in the
context of colliding waves. The remaining equations for the component
of the metric equivalent to our function f, are similar in structure to the
set of equations (3). Thus, there exists a formal analogy between the
mathematical theory of colliding waves and the mathematical theory of
black holes, since both stationary axisymmetric spacetimes and space-
times with two spacelike Killing vectors admit ihe same Ernst equation.
Now, the study of the gravitational field of massive bodies is the natu-
ral context in which the validity of a theory of gravity must be tested.
Therefore, since the general theory of relativity was formulated in 1916,
stationary axisymmetric solutions have been extensively studied, and
an enormous amount of work has been done in elaborating techniques
and methods for solving these problems. Due to the analogy described
above, it is clear that we can use all of the methods developed for station-
ary axisymmetric solutions over the past sixty years, to find solutions

F =log
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Colliding waves in general relativity 7

for the collision of gravitational waves. I will say nothing more about
these techniques (for an extensive review see, for example, Ref. 9.) 1
shall now describe the general features of the wave-wave interaction pro-
cess, as they emerge from the variety of solutions that have been found.
Before starting, we need to remark upon the following fact. Let us in-
troduce a couple of null coordinates u = ¢ — ¢ and v = { 4+ z. By the
use of the aforementioned techniques, we are able to find the solution
in the region where two waves interact, corresponding to region I in the
two-dimensional diagram represented in Fig. 1.

Then, by using an algorithm introduced by Penrose, we extend the
solution in the precollision regions I1, I11, and IV. The algorithm consists
in assuming that in the regions before the collision, where respectively
only an outgoing wave (II) or an ingoing wave (III) are present, the
metric depends on u or on v only; that region IV, representing the
spacetime between the two incoming waves, is flat, and that

g (w) = gl (u,v =0),
95 (v) = g;,(u=0,v), (4)
g{‘},’ = g{“,(u =0,v=0).

{lat

Fig. 1 The spacetime resulting from the collision of plane gravitational waves.
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The requirements (4) are accomplished by the formal substitution
u— uH(H), v — vH(v)

(where H is the Heaviside step function) in the expression of the metric
valid in the interaction region.

The procedure we use for finding the complete solution is certainly
unusual. We proceed, in some sense, as shrimps: find the solution in the
region of interaction, then extend it back to the past to know what is the
profile of the waves whose collision produced that interaction. However,
even if we use an approach which could appear as exotic, the problem is
well posed in the sense that the initial data on the null boundaries u = 0
and v = 0 uniquely determine the solution in the region of interaction
(see Ref. 4). With the clarification of these points, we are now in a
position to describe the common features of these solutions.

We can investigate their behavior by using the Weyl scalars, which
provide essential information on the nature of the free part of the grav-
itational field. They are five complex scalars, constructed by projecting
the Weyl tensor onto a suitable chosen null tetrad, and each of them car-
ries particular information. We shall restrict ourselves to those scalars
relevant to our problem, namely ¥,, ¥,, and ¥,.

¥, and ¥, represent, respectively, the ingoing and the outgoing pure
transverse radiative part of the field. This means that if we consider a
ring of test particles, the forces generated by a field in which only ¥,
(or ¥,) is different from zero, will deform the ring into an ellipse. {We
are assuming that the direction of the wave is orthogonal to the ring;
the polarization axis will coincide with the axis of the ellipse.) If both
polarizations are present, ¥, ( or ¥,) is complex and the deformation
is the result of that described above including the same effect, however
with the polarization axis tilted at 45°. For a solution describing a single
outgoing or ingoing gravitational wave (Petrov type N solutions) only
¥, or ¥, are different from zero.

¥, represents to so-called Coulomb-like part of the field. In fact, if
¥, # 0, the corresponding gravitational force distorts a sphere of test
particles into an ellipsoid. This is typical of the behavior of particles
falling in toward a central attracting body with the inverse square law.
For example, in the Schwarzschild and in the Kerr solution (or in general
for Petrov type D solutions) only ¥, is # 0. This beautiful description of
the nature of a gravitational field in terms of the Weyl scalars was given
by Szekeres in 19651° by analysing the equations of geodesic deviation.
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Colliding waves in general relativity 9

We find the following situation when two gravitational waves collide.
In the region before the collision respectively, only ¥, and ¥, are differ-
ent from zero, due to the presence of an ingoing and an outgoing wave
(see Fig. 1). In the region of interaction we still expect some mixture of
ingoing and outgoing radiation and in fact ¥; # 0 and ¥, # 0, but in
addition, we find that a Coulomb-like component of the field develops,
since ¥, turns out to be different from zero. Thus, the two waves do
not pass through one another, namely, they do not superimpose and the
non-linearity of the interaction manifests itself in the appearance of the
Coulomb-like part of the field. This is a true interaction term. We can
also say something more by analyzing the structure of the Weyl scalars.
Let us do this by considering the simplest case, the Khan-Penrose solu-
tion, which describes the collision of two impulsive gravitational waves
with collinear polarizations. Although this solution is simple, it exhibits
most of the typical features present in more complicated solutions.

Imagine, for example, that the amplitude of both impulsive waves is
A =const. Before the collision we have:

U, = Aé(u) in region II,
¥, = Aé(v) in region III.

After the collision, in the region of interaction:!!

¥y = g(u)b(v) + k(u,v),
¥, = g(v)é(u) + k(v,u),
U, = s(u, v)0(u)f(v) .

From these expressions we deduce that the two impulsive waves continue
after the collision, but with the amplitude scaled by the function g. In
addition, they develop a tail given by the function k(u,v), and it is
interesting to note that & is a function of u and v in ¥,, and of v and u
in ¥,. The conclusion is that part of the waves are transmitted in the
region of interaction, part are reflected by each other and part of the
incoming radiation transforms into a Coulomb-like gravitational field.

However, the most remarkable consequence of the interaction is the
following: at a finite time from the instant of collision, and at a finite
distance from the surface where the collision takes place, a curvature
singularity appears, and the Riemann tensor diverges. The singularity
is a spacelike singularity and it occurs on the hypersurface

w4+ =1.
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In addition, it is a global singularity, because any test particle which
is invested by one of the two waves, is forced to enter in the region of
interaction, and to reach the singularity in a finite interval of proper
time: nothing can escape the fate of being terminated onto the spacelike
singularity.

It should also be stressed that the amplitude of the colliding waves in
no way affects the creation of the singularity: even if the amplitude is
very small, the singularity, sooner or later, appears. However the ampli-
tude of the colliding waves, together with the other physical parameter
at our disposal, the angle o between the two directions of polarization,
determine the timescale for the creation of the singularity, according to
the equation:

At 14 cos?c, )

1
=0
where At is the time interval between the instant of collision and the
formation of the singularity, and A is the amplitude of the colliding
waves.!? Thus the time required in creating the singularity is inversely
proportional to the intensity of the wave. A further delay is introduced
if the two waves have non-collinear polarization.

However, the collision of gravitational plane waves does not necessarily
produce a singularity as a final result. In fact there are solutions in
which the physical singularity on the surface u?+v? = 1is replaced by a
coordinate singularity and precisely, by a Killing-Cauchy horizon, similar
to the horizon appearing in black hole solutions. In the black hole case
the horizon is a compact hypersurface surrounding the singularity, while
in the case of colliding waves it is a non-compact hypersurface. However,
it possesses all the features which characterize a horizon, according to
the standard definition: it is a smooth, null hypersurface on which the
vector, which becomes null, is a Killing vector, and it is a one-way
membrane.

The first solutions which were found to exhibit this non-singular be-
havior are described in Refs. 13-16. They present an interesting prop-
erty: the region of interaction is isometric, respectively to a part of the
Kerr, of the Schwarzschild, and of the Taub-Nut solutions inside the
horizon. The isometry is only local since the Killing vectors have open
orbits in our case and closed orbits in the case of black holes. It is
interesting to note that in these solutions, the only nonvanishing Weyl
scalar in the region of interaction is ¥, and this means that the incident
radiation completely transforms into a Coulomb-like field. The second
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interesting information is that, since the hypersurface 2 + v? = 1 is
only a coordinate singularity, these solutions can be extended across
the horizon in a way which is similar to the Kruskal extension for the
Schwarzschild metric or the equivalent extension for the Kerr metric.
When the extension is performed, a singularity always appears. How-
ever, it can be a different type of singularity, for example, timelike in
the solution found by Chandrasekhar and Xanthopoulos in Ref. 13. Fi-
nally, it should be noted that due to the presence of impulsive waves,
these solutions always present a singularity at the points u = 1, v = 0,
and u = 0, v = 1.7 Other horizon-like solutions have been found, or
analyzed, in Refs. 18 and 19. The last remark I would like to make
on these solutions concerns their stability. Let us consider for example
the solutions which are isometric to the Schwarzschild and the Taub-
Nut metrics. They belong to a large class of soliton solutions identified
by a set of parameters, and they correspond to a particular choice of
those parameters. If one of the parameters is slightly changed, even
by an infinitesimal amount, the solution immediately becomes singular.
The choice of a particular set of parameters corresponds to a particular
choice of the initial data on the null boundaries. Therefore, a perturba-
tion of the initial data (or equivalently, a plane symmetric perturbation
of these solutions) transforms the horizon into the usual spacelike singu-
larity. In addition, Chandrasekhar and Xanthopoulos?® have shown that
the presence of an arbitrary small amount of null dust in the region of
interaction would immediately change the horizon into a curvature sin-
gularity. These are clear indications of instability of the Killing-Cauchy
horizons. (The problem of the stability of horizon-like solutions against
small perturbations has also been analyzed in Refs. 21 and 22.)

3. Creation of curvature singularities

Apart from some exceptions, we have seen that the final result of the
collision of gravitational plane waves is the creation of a curvature singu-
larity. Therefore, the next question to answer is: why does the collision
of gravitational plane waves generate such an infinite gravitational field?
This occurrence is certainly related to a process of mutual focusing of the
two colliding waves. This can be understood, for example, by studying
the behaviour of null geodesics in the field of a single wave. If we con-
sider a tube of neighboring null geodesics and take and infinitesimal ring
orthogonal to them, compute how this ring expands or contracts, how it
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