Index

An f following a page number denotes a figure.

affine transformations, see uniform components; uniform transformations
age, 96, 106
alcohol, effect of, upon children's faces, 80, 160–1, 285–7, 301–2
allometry
and Centroid Size, 171–6
directionality of, 239–41
distance measures, 96–108
of ellipses, 212–13
elements
for distances, 103–8
for multiple landmarks, 353–7
for triangles, 239–41, 243–4
extrapolation of, 388–90
false, 168–71
general size, 96–102
group differences, 25, 115–19
iteration of, 204, 389
in landmark-based statistics, 16, 61–2, 121, 353–4
literature of, 51
and log transformations, 101–2
nonlinear, 103–7, 353–7
in the null model, 168, 244
and Procrustes analysis, 261
and shape averaging, 158
and shape coordinates, 167–78
static, 231
testing, 175–6
anagenesis, evolutionary, 396f/
analysis of covariance
and Centroid Size, 178
and cross-ratios, 119–20
in the group discrimination problem, 115–18
setup for shape coordinate analyses, 231
analysis of variance, of Procrustes distance, 269
ANCOVA, see analysis of covariance
angle
autocorrelations of, 238–9
constraining, in thin-plane splines, 381–2
as distance
for outlines, 46–7
for triangles (anisotropy), 388
double, and statistics of ellipses, 212–13
and homology, for outlines, 45–6
from lengths, 126–7
as measurement
of forms, 57, 62
of medial axis, 78f, 83
of purely inhomogeneous changes, 290
and the shape-change tensor, 214–22
parameter for, 190–1
between principal axes, as invariant, 217
in Procrustes analysis, 265–7
and ratios at 45°, 217–21
from shape coordinates, 136
between shape variables, 136–7,

Anisotropy
approximation for, 209–11
as cross-ratio, 385–7
as distance measure, 13, 18, 26, 56,
211, 215, 385–91
of ellipses as data, 212–14
formula for, 210
geometry of, 385–91
as a logarithm, 386–7
makes shape variables commensurate, 218, 341
in matched studies
averaging of, 232–3
comparisons of, 233f, 237
ruler for, 388

and shape coordinates, 209–11, 235
and the standard error of principal axes, 237
testing of, 230, 233
of uniform transformations, 284–5
as a vector, 233f
ANOVA, see analysis of variance
ANS, see Anterior nasal spine answers, form of, in morphometrics,
3–4, 370–2; see also multivariate
analysis, reporting
Anterior nasal spine (landmark), 71,
247–8, 309–10, 335–9
Apert syndrome (example), 246f
calvarial form in, 161–2, 333–9
cranial base in, 162–3, 296–9
data listing, 405–6
mandible in, 83–5
maxilla in, 245–8
uniform component of, 335, 339f
aperture (landmark), 73, 78f, 220–1
Apsi (example), 267–70
area
and Centroid Size, 242
covariance with shape, on null model, 170–1
formulas for, 93, 170, 198
and size variables, 93
in testing for size differences, 177–8
as a variable, 57
aspect ratio, 135, 219–21
asymmetry, analysis of, 167, 267–70
average image, 366–7, 383–4
average shape
algorithm for, 156–8
and averaged images, 383–4
from distances between objects,
44–5
examples, 66–85, 160–7; see
also triangles, examples of, and
names of examples, e.g., Apert
syndrome, rat
average shape (continued) and Procrustes analysis, 268 / role of in Kendall’s shape space, 183–4, 186 in multivariate analysis, see multivariate analysis, role of mean form in testing of, via F^2 or MANOVA, 158–9 over time, graphics for, 355–6 axes, principal, see principal axes baseline as Absolute, in hyperbolic geometry, 388 and the centroid of the landmarks, 279–80, 304 change of, for a single triangle, 130–4, 161, 204–7, 391–2 as a Möbius transformation, 131, 291 and the null model, 142 and Partial Least Squares, 42, 44 rotation of, 132–3, 146, 206–7, 314 choice of, rules for, 6, 141, 157, 280, 361 and the circle construction, 200–2, 204–7 and covariances of shape coordinates, 150–3 for ellipses, 212 landmarks on, 202, 299 length of covariance with shape of, 168–70 and size differences, 177 midpoint of and the Mardia–Dryden distribution, 183 and covariances with baseline length, 170 along principal axes, 203, 205–7 and purely inhomogeneous transformations, 289f, 291 and relative warps, 346–7 and rigid motion, 9–11, 291, 313–14 and uniform transformations, 271–3, 283–5 distance from, 272, 278–9 factor estimate, best for, 279–80 testing, 287, 314, 355f uniformity of change along, 202, 312 Basion (landmark), 67, 71, 163, 228–40, 298–9, 309–10, 312 basis (algebra) for shape variables choice of, and T^2, 159 from finite-element analysis, 252 orthogonal, 14–16, 287, 298, 316–18, 328 principal and partial warps, for purely inhomogeneous transformations, 324–8, 340, 346–7 for quadratic transformations, 303 for quadrilateral transformations, 293 for rigid motions, 313–14 shape coordinates, for shape variables, 137–41, 271f, 305 for shape-free size, 171–2 for tetrahedra, 165 for uniform transformations, 272–3 for size variables interlandmark distances, 90–2, 120–1, 225–7 see also degrees of freedom bending of grid lines in thin-plate splines, 377–82 of linear structures, 301–2 as a quadratic transformation, 300–6 of surfaces, 322–4; see also bending energy bending energy, 15, 29, 33, 316–33 alternatives to, 367–8 decomposition of, 326, 329, 336 dependence on mean form, 323–4, 346 as distance measure, 15, 56, 316–19 and homology, for curving form, 377–82 makes shape variables commensurate, 318f, 341 minimizing, 378–9 and null models for shape variation, 363 rank of, 319, 353 and scale, 345–6 and variance, see relative warps see also thin-plate spline birrhmonic equation, 27, 368; see also thin-plate spline bилиnear transformation, 253f, 306–7 biometrics causation and, 35–6 fundamental metaphor of, 55, 371 biorthogonal directions, 187–251 construction of, 201f definition of, 192 see also principal axes biorthogonal grids, 22, 24, 51, 251–3 biostereometrics, 65 blackboard, spherical, 181 Bookstein, Fred L., address of, 400 Bookstein shape coordinates, 183; see shape coordinates boundary point, 61; see also landmark points brain, landmarks for, 383f Bregma (landmark), 67, 312 Brachydont (example) comparisons of, 115–20, 163–4, 219–21 data listing, 407–8 error structure in, 156–7 landmarks for, 73–4 vertex angle, opening of, 220–1 canonical correlations analysis, 43, 238–9; see also Partial Least Squares canonical-variate analysis, 114, 399 Cartesian coordinates coupling for relative warps, 344 for the thin-plate spline, 34 displacements of, as warps, 28f, 293, 294f, 325f, 330f, 333f, 335f, 352f errors of, 141–4, 156–7, 241 examples of, see multivariate analysis, role of mean form in nonlinear transformations and, 324–5, 329–30, 335, 352, 353 null model for, 141–4 and shape coordinates, 128, 129 formula for, 130 and size variables, 89, 93 and the thin-plate spline, 32–4 tensors from, 189–98 variances of, 149–50, 175 Cartesian transformations, 20–2, 57–8, 60, 227 causes, see explanation centroid baselines through, 280, 304 and homology, 254 in Procrustes analysis, 263–4, 265–7 in shape space, 391–3 see also Centroid Size Centroid Size and allometry, 103–7, 171–6 and analyzing all of shape space, 353–7 definitions of, 93–4 as sum of two size variables, 95 examples for many landmarks, 352–7 for triangles, 230–1, 239–40, 242–4 versus General Size, 97–8, 106, 231 in Kendall’s approach, 180, 182, 185, 211 power of, under null model, 176–8 in Procrustes analysis, 263, 270 and relative warps, 347, 352–7 and shape space, under null model, 171–5 and size differences, 176–8 transformations of, 176 and uniform transformations, 353–7; see also allometry when variances at landmarks are unequal, 175 cephalometries examples, 228–41, 245–51 “growth axis,” 235 landmarks for, 67–72 of the mandible, 80–7
registration at two points, 128–30
chambers, landmarks for, see Britzela: Glabrotorula
caracter, shape as a single, 269–70; see also shape space, subspaces of
children
effects on faces of, see alcohol;
phenotypy
growth in, see University of Michigan University School Study
landmarks for studies of, 5–6,
68–72, 78–80
chin, landmarks at, 6, 69–71, 79–80,
81f, 286–7, 301–2; see also Menton, Pogonion
chocolate, 200
circle construction, for the principal axes, 199–211, 234, 243, 245, 247,
385–7
approximation, 208–9
assumptions underlying, 202
schematic, 201f
circles, in shape space, 389–90
circles, inscribed, 207f, 213f; see also medial axis

curvilinearity
of noise, see null model
of shape distributions, 25–6, 141–50
of shape metrics, 25–6, 182
coefficients of variation
of interspecimen distances, 123–4,
398–400
of intraspecimen ratios, 359
of shape, suited to shape coordinate approximation, 391–2

collinearity
of points, 179, 181–2
and Procrustes analysis, 264–5
of shapes, 204, 385–7
of syndromes, 247–8

colonial organisms, homology for, 360
commeasurable
in factor models, 37

incommeasurability of shape distances, 183–5, 316–19, 341
of shape variables, 218, 341

complex arithmetic and amoeboid, 385–7
and Kendall’s shape space, 181
literature of, 33–4
and Procrustes analysis, 259, 262–5
and quadratic transformations, 307–9
and shape coordinates, 129–32,
139–40, 149, 152–3, 391
components, see principal components; quadratic transformations; relative warps;
uniform components
computers, high-speed, 19, 370–2
condyle, landmarks on, 72
Condylion (landmark), 71, 81f
in three dimensions, 166–7, 248–51
conformal maps, 131, 263

conjugate directions, 305, 308, 342–3
constructed landmarks, 88–90, 93,
205–7, 254; see also landmark points
distance zero, 90, 223f, 254f, 264
coordinate systems, irrelevance of, 126, 141
Coronoidale (landmark), 71–2, 86
alternatives to, 82–3, 86–7

correlations
inutility of, in morphometrics, 102
Partial Least Squares and, 42
among ratios, 84–5
between shape coordinates, 142
between shape variables of triangles, 136–7, 147
cortex, homology for, 359–60
couples of, strains, 288, 291–2, 297, 349
optimal, 366

covariance
accounting for, in path analysis, 108–12
between covariant and invariant, 146
as deformation, 227
and explanation in morphometrics, 1, 16, 38–9, 58
with latent variables, 42
in Partial Least Squares, 43
in Procrustes analysis, 263, 268
between shape coordinates to the same baseline, 150–3
between size and shape, see allometry
between subspaces of shape space, 16, 352–7
see also least squares; regression
covariance matrix
factors of, 40–1
noninvertibility, for measured distances, 115–16
and Partial Least Squares, 41–3
of partial warps, 347
principal components of, 39–40
and random walk, 398–9
of shape coordinates, 150–1, 154–5,
274–8, 283, 263
strategies for, two, 16
for transformation modeling, 282–3, 300–1

covariant, of a shape change, 134–5, 214–21

covariance with invariant, 146
cranial base (examples)
in human growth, 223
in rat growth, 297–8, 312, 347–53, 355f
in synostosis, 163f, 298–9
craniofacial syndromes, see Apert syndrome; Crouzon syndrome
cross-ratio
of distances, 118–20
inefficiency of, 225–7
of principal axes, 385–7
shape coordinates as, 131
Crouzon syndrome (example), 246f
cranial base in, 163
mandible in, 80–5
maxilla in, 246–8

curvature
landmarks from, 64–6, 360–1
and medial axis, 65
for outlines, 46–8, 360
Riemannian, of shapes spaces, 385
for surfaces, 47, 360–1

curving form
averaging, 366–7, 383–4
deficient landmarks, see deficient landmarks
homology for, 48, 58, 376–8
information from, 2, 86–7, 299–301,
360–1
and landmarks, 64–6, 86–7
and the medial axis, 65–6, 82–7
in space, 66, 360–1
see also outlines; surfaces

cylinder, elliptic, of bending energy, 317–18, 340–1, 343, 346

D2 (statistic), 393, 399
data, kinds of, 44–50; see also landmark points; outlines; textures
data sets, 400–14
obtaining, 400

deficient coordinates, see deficient landmarks
deficient landmarks, 65, 69, 74, 77,
361, 377–82

statistics of, 156–7, 240–1, 299–301
deformation, see Cartesian transformations; interpolation; thin-plate spline
deformity, measuring as, deformation, 80f, 162f, 246, 301–2, 333–9
degrees, see angle
degrees of freedom, 25, 159
for anisotropy, 237
of constructed distances, 91
for deficient landmarks, 65, 379–8
for directions of shape variables, for a triangle, 133–5, 214–15, 237
diffusion, 212–13
in the factor model, 100
for finite elements, 252
of partial warps, 318f, 339, 341, 344
for pentahedron, 167
of polynomial fits, 302
of the principal warps, 321, 346
of Procrustes residuals, 261, 265
of the Procrustes superposition, 263

427 Index
degrees of freedom (continued)
for purely inhomogeneous
transformations of quadrilaterals,
294, 319–20
for quadratic transformations,
304–5
for quadrilaterals, 287, 293, 299
in random walk, 398
of relative warps, 318f, 341, 344
of rigid motions, 313–14
of shape-free size variables, 171–2
of shape space, 13, 140–1, 159, 167,
222, 318f
of size space, 92, 115–6, 252
for subspaces of shape space, 25,
341
for symmetric structures, 7, 167
for tensors, 252
for thin-plate splines, 368
for a tetrahedron, 165
for a triangle, 8, 129, 235–6
as direction and anisotropy, 237
for uniform components and
transformations, 272–3, 282, 284
derivatives
and distances among outlines, 44–8
and the finite-element method, 251–5
of maps, 57; see also biorthogonal
grids
along outlines, 44–8
and the thin-plate spline
first, 32, 331, 377–82
second, 29, 33, 319, 322, 233
descriptive finite elements, see finite
element method
descriptors of deformation, 323, 328;
see also partial warps; principal
warps
developmental biology; see allometry;
landmark points, and explanation
developmental timing, see timing
diagrams, role of, 3–4, 256–7, 370
degree of freedom of the cylinder of bending energy, 318f
and landmark definitions, 65
of the mandible, 82–3
of a shape scatter, 132–3, 390–2
directions in shape space
coverage of, 23–5
naming, 214–22
as variables, 128, 133–7, 215
discriminant-function analysis, 83–5,
112–8, 220–2
discriminatory path analysis, 84–5,
108–21; see also Group Shape
distances, two senses of, 55–6
between points, 17, 55–8, 88–124
analysis of covariance of, 115–21
constructed, 89–90, 222–4
and explanations, 62
factor analysis of, 103–8
growth of, 234–5, 245–50
landmarks and, 58
in outline analysis, 45–6
in Procrustes analysis, 265–7
simple ratios of, insufficient for
multivariate statistics, 225–7
and testing size difference, 177
see also size variables
between shapes, 16, 21, 48, 58,
178–9, 185–6, 316–9, 353–7
coefficient of variation of, 123–4,
398–400
cross-ratio as, 385–6
and ordination, 48–9, 398–400
among outlines, 44–8
for quadratic transformations, 368
for triangles, geometry of, 385–91
see also anisotropy; \(D^2 \); Procrustes
distance; shape distance
Earhole, see Meatus
ecocnophenotyp (example), 242, 244–5,
299–301
efficiency, statistical, 23–6, 185, 362
of Centroid Size, 176–8
of cross-ratio methods, 225–7
and finite-element methods, 252
of \(T^2 \), when null model is nearly
true, 277
eigenanalysis
of bending energy, 319–33
graph for, 321f
see also cylinder
of covariance matrices, see
principal component analysis;
relative warps
and random walk, 394
relative, 224, 304–5, 340–3
and tensors, 198
eigenvalues, 46–7, 62, 75–7
covariances of, 242
and landmarks, 75–7, 244
in multivariate analysis, 15
ellipses
and the circle construction, 213f
as data, 212–13
relative eigenanalysis of a pair of,
342–3
representing shape change, 207
of shape predictability, 238–9
and the single-factor model, 153–6
elliptic cylinder of bending energy, see
end points, as landmarks, 65–6; see
also medial axis
Endocanthion (canthion), 6, 8–11
energy, see bending energy
energy-specific variance, see relative
warps
equilateral triangle as exceptional case, 134–5, 171,
181f
shape variables for, 137f
equivalence classes, shapes as, 180–1, 183
equivalence, statistical, 93
errors
of homology between landmarks,
251–5
of method, diagnosing, 24, 227
statistical, see null model; residuals
Ethnoid registration (landmark),
71–2, 163, 298–9
Euclidean distance matrix analysis, 14,
225–7, 362
evolutionary rates, 393–400
examples, see Apert syndrome; brain;
Biedl/ine; children; Crouzon
syndrome; Glomus; honeybees; rats; University of
Michigan University School
Study, Vornia
Exocanthion (landmark), 6, 79, 286–7
explanation, 34–44, 59–63, 236–7
allometry as, 96–8
and canonical variates analysis, 114
and discriminant-function analysis,
114
forms of, 2, 61, 96
by General Size, 96–8
and landmarks, 59–66
and shape factors, 153–6
see also variance, “explained”
extrapolation of uniform
transformations, 204, 388–9
extremal points, 65
eyebrow, landmarks on, 6, 79–80
F (statistic)
for allometry, 175–6, 230–1, 239,
243
noncentral, for Kendall’s shape
space, 184
for other exogenous predictors of
shape, 245
for uniform transformations, 282
see also \(T^2 \)
facing, human, landmarks for, 5–6,
78–90; see also alcohol; growth; phentoin
factors/factor analysis, 37–44
as cause, in morphometrics, 36–7
and directional noise, at landmarks,
154, 156–7, 240–1, 244
in discrimination, 84–5, 112–18
endogeneous, 38–41
and estimating features of
transformations, 283, 300–1, 314
exogenous, 37–8
as explanations, 36–9, 60, 97
failure of factor model, 245
General Size as, 97–100
example, 103–7
Group factors, 40–1
Group Shape, 115–17, 121–3
least squares and, 40–41, 100–1
gradient, of shape variables, 134–5; see also covariant; growth gradients
grids, biorthogonal, see biorthogonal grids
Group Shape, 108–18
and the “shear,” 122–3
growth axis, 235, 309–10
growth, examples of, see rat;
University of Michigan University School Study
growth gradients
cubic, 314
error of, visualizing, 366
fitting, 60, 303–4
as a hierarchy, 287, 302
history of, 22
Huxley’s model, 60, 102
and multivariate statistics, 14, 18,
36, 287
and Precrudes analysis, 261
as quadratic transformation, 305–6,
309–12
and relative warps, 13, 347–54
growth prediction, 238–41

hemifacial microsomia (example), 163
‘heterology,” 62–3
Hillel, Rabin, 194
homogeneity, of Kendall’s shape space, 183–6
homology, biological, 2, 13, 14, 17,
56–8, 62–3
and centroids, 263
and curvature, 360–1
data lacking in, 44–50, 86–7,
178–86, 212–14
as deformation, 57–8
difficult cases, 359–60; see also
deficient landmarks
and finite elements, 251–5, 289–91
and landmarks, 56–8, 63–4, 359
constructed landmarks, 223–4,
254, 290–1
for outlines, 45–4, 58, 377–82
of parts, 56, 368–9
and Procrustes superpositions, 263,
265–7
of size variables, 56–8, 254
textures, 49
and the thin-plate spline, 26, 253–4
and uniform transformations, 188–9
honeybees (example), wing symmetry
of, 267–70
Hotelling’s T^2, see T^2
hyperbolic plane, 204, 211, 385–92
ID, see Infradentate
image analysis, 49–50, 383–4
thin-plane splines and, 30, 366–7
Inferior zygoma (landmark), 71, 334–9
Infradentate (landmark), 71, 81, 83–4,
86
inhomogeneous transformation, see
purely inhomogeneous transformations
Interparietal suture (landmark), 67
interpolation
versus modeling, 255
around outlines, 45–6
the thin-plate spline as an, 30–4
see also finite element method;
homology; thin-plate spline
Interparietal suture (landmark), 67, 312
invariance
of bending energy, 34
of the circle construction, 205, 207
of findings, 141, 187, 270–1
of fitted transformations
quadratic, 302–4
uniform, 274, 284–5
of latent variables, under rotation,
42–3
of the Mardia–Dryden distribution, 184–6
of shape-coordinate scatter under
change of baseline, 131–4
accuracy of, 391–2
of tensors computed from Cartesian
coordinates, 199
of the thin-plate spline procedure, 34
of the uniform subspace, 273
see also invariants
invariants
of the circle construction, 204–7
and correlation with covariant, 146
regression coefficients as, 35
of a shape change, 133–4, 214–21
of tensors, 252
inversion, and covariances of shape
coordinates, 152–3
IPS, see Interparietal suture
isometry, 23, 25, 102, 184
ISS, see Interparietal suture
juxtapositions of tissues, 63–4

Kendall’s shape space, 22, 26, 178–86,
364, 309
green of, 181 f, 211, 318 f, 385
see also Mardia–Dryden
distribution; Procrustes distance;
shape space
kite, see square, transformations of
Landmark, 70–1
Lambda (landmark), 67
Lambda (statistic), 159, 162
landmark points, 2, 17, 55–87, 385–61
cephalometric, 67–72
constructed, see constructed
landmarks
deficient, see deficient landmarks
definition, 2
Index

landmark points (continued)

dependence of principal warps on, 323–4, 331–3, 337
from eigenshapes, 75–7
examples of, 66–80, 81, 268, 383
and explanation, 59–63
and finite elements, 251–5; see also triangles
in Kendall’s shape space, 185–6
and localization, 292, 340–1; see also residuals, from Procrustes
fits
from the medial axis, 82
and relative warps, 48, 58, 64–6, 360
pathologies of, 86–7, 359–60
from photographs, 5–6, 79–80
registering, and shape coordinates, 128–30
residuals “at,” 292; see also Procrustes analysis
roles of, in morphometrics, 34–5, 120–1
spacing of, 261, 331–3, 341, 382
subsets of, see partial warps; rigid motions
from surfaces, 360–1
tensors from, see triangles
of types of, 63–6
latent variables, 38–44, 97; see also factor analysis; General Size;
Partial Least Squares
latitude, as predictor of Globorotalia shape, 242, 244–5, 299–301
least squares
and factor models, 39–41
and generalized, 274, 276, 299–301, 303, 314; see also variance, explained, by projection onto shape
spaces
as measurement, 35–6
see also Partial Least Squares; principal component analysis; regression
Legendre polynomials, 107
lengths, as variables, 57–8; see also distances, between points
LIE, see Lower incisal edge
lines and landmarks, 63f, 65–6, 361
in shape space, 386–7
see also tangent lines and planes
Lip commissure (landmark), 6 loadings
and cross-ratios, 119
for discriminant-function analysis, 115
for Group Shape, 116
and log size variables, 101–6
for relative warps, 356
for the uniform component, 278–9
see also factor analysis; General Size
localization of, morphometric analyses, 62–3, 64, 261, 292, 316–19, 320, 341, 367

minimizing, 377–82
of polynomial fits, 302, 316
and principal warps, 322–4, 328–33, 376–7
of purely inhomogeneous transformations, 292
logarithms of Centroid Size, 106, 176
of cross-ratios, 119–20
justification for, 101–2
and Procrustes distance, 95
of strain ratios, 386–8; see also anisotropy
longitudinal designs, see entries under growth
Lower incisal edge (landmark), 71, 81f, 83
Mahalanobis distance, 317, 393, 399
mandible
growth of, in three dimensions, 166–7, 248–51
landmarks on, 71–2, 86–7
and medial axis, 80–7
in synostosis, 80–5
MANOVA, see multivariate analysis of variance
Mardia–Dryden distribution, 23, 159, 183–5
and uniform transformations, 276–7, 283
see also null model
matched designs, 245–8
approximation to T^2, 232–3
see also entries under growth
maxima
effects on, see Apert syndrome
landmarks on, 71, 72
maximum likelihood, 159, 185, 276–7, 283, 362
mean form, see average shape; multivariate analysis, role of mean form in
Meatus (landmark), 79, 285–6
medial axis, 80–7
definition of, 82
and landmarks, 17, 65–6, 69–70, 82–3
of the mandible, 82
morphometric variables from, 78f, 82f, 86–7
median line, 89–91, 97–111
Menton (landmark), 71, 81f, 228–41, 309–10
noise at, 240–1
in three dimensions, 166–7, 248–51
metrics for shape space, see anisotropy; bending energy; principal components, metrics for; Procrustes distance
midline, as baseline for shape coordinates, 6
missing data, 359
morphological integration, 369
morphometrics
in the curriculum, xiv–xv
 critiques of methods for, 227
definitions, xiv, 1, 400
factor analysis in, 101; see also factors
geometrical models for, 257–8; see also transformation
history of, xv–xvi, 21–3, 50–1, 178–9
landmarks, roles of, 34–5
learning, xv
metrics, role of, 13–16, 56, 185, 353–7, 364; see also anisotropy; bending energy; Procrustes
distance
the multivariate synthesis in, 22–6; see also multivariate analysis
overviews, 1–19
prerequisites for, xv
induction of, 1–4, 358–72
readings in, 50–1
routine, 12, 358–9, 361–5, 370
morphometry, 49–50
motion, as interpretation of shape
change, 10–11, 208; see also Procrustes superposition; rigid motion
multivariate analysis
of asymmetry, 269–70
discriminant-function analysis, 112–14
distances, 88–124
decision rules, 55–6
of ellipses, 212–13
day and night, 16
of finite elements, 251–5
first steps in, 8–9, 12, 361–2
of group differences, 158–9
morphometrics as a special version of, 3, 12–16, 21, 227–8, 257–8, 352–3, 364
normal assumption underlying, 277
of the purely inhomogeneous transformation, 290, 294
readings in, 52
reporting, 8–11, 270–357, 370–71
role of mean form in, 14–15, 120–1, 227–8, 255, 288, 316–7, 324, 362, 364
of shape coordinates, 131, 158–9
synthesis of, for morphometrics. 22–6
of triangles, 227–51
see also distances; efficiency; factors; variables; and specific analyses and statistics, e.g.,
canonical correlations analysis, T^2
multivariate analysis of variance, 158–9, 162–3
Mantuls, landmarks for, 74, 76

Index 430
path diagram for discriminatory analysis, 108f, 112f
for factor analysis, 37f
for “size-adjustment,” 111f, 122f
PCA, see principal component analysis
perpendicularity of covariants and invariants, 133–6 of hyperbolic circles and hyperbolic radii, 389 of principal axes of strain, 192, 194 Pfeiffer’s syndrome (example), 163 phenobarbital, 5 phenotypin, effect of, upon children’s faces, 4–11 photographs, landmarks from, 5–6, 78–80 physics, metaphors from bending energy, 29, 318–19 constants, 35 distance, 55, 371 Galilean geometry, 341 mechanical equilibrium, 327 scale, 322 space and time, 341 sums of squares, 94 tensor field, 254 true values, 35 pictures, 383–4 pin plot, 229f, 247f plants, homology for, 369 PLS, see Partial Least Squares PNS, see Posterior nasal spine Pogonion, see (landmark), 71, 81f Poincaré half-plane, 204, 385–92 polar coordinates, 212–13 polynomial models for shape coordinates, 22, 287, 302, 304 for size variables, 104–7 see also quadratic transformations; uniform transformations Posterior nasal spine (landmark), 71, 300–10, 335–9 power, of tests for size change, 176–8; see also efficiency pre-shape, 180 principal axes, 187–255 as baseline, 203, 205–7 construction of, 200–2, 208–9 definition of, 192 of ellipses, 207–8, 212–13 existence, proof of, 208 in finite-element analysis, 251–5 ratio of strains along, see anisotropy reporting, 218–21, 324, 335, 366; see also transsects of a shape scatter, 153–6, 243 and shape variables, 214–21 standard error of, 209, 236–7, 254 for thin-plate splines, 324–5, 334–5 for a uniform transformation, 283–5, 366 see also principal strains principal components/principal component analysis and allometry, 101 analogues in morphometrics, 14–16, 318, 341, 364 circle construction for, 242–3 and discriminant-function analysis, 113–14 and factors, 40–1, 107, 113–14 and General Size, 103–8, 110, 116; see also General Size geometry of, 113, 340, 342 for Glabrousata, 242–3 and least squares, 39–40 as mean, for interspecimen distance data, 44–5 metrics for, in shape space, 186, 340–7 and Partial Least Squares, 43 of partial warps, see relative warps and random walk, 394 relative warps as, 343–4, 346–7, see also relative warps and scatter, 113–14 and shape factors, 155–6 and the “shear,” 121–3 of size variables, 103–8 subspace of subspace of shape space, 341, 353 of triangles, 242–3 and the truss, 95 of uniform factor estimates, 279, 354f principal directions, see principal axes principal strains, 187–255 and biorthogonal grids, 22, 251–3 construction of, 200–2, 209–10 definition of, 196–9 in finite-element analysis, 251–5 ratio of, see anisotropy standard errors of, 234 testing, 236 principal warps, 14–15, 25, 316, 320–39 and computation of relative warps, 340, 346–7 zeroth, see uniform components, principal components of see also partial warps principles of morphometrics, 1–12, 19, 358–72; see also answers; landmark points; questions in morphometrics; shape coordinates Procrustes analysis, 14, 62, 258–70, 362, 365 as complex regression, 262–5; see also residuals; extensions of, 186, 259, 277 prior knowledge and, 330 Procrustes distance and anisotropy, 211, 385 in asymmetry studies, 268–70 and bending energy, 317–18 characterization of, 15
Procrustes distance (continued) diagram of, 269f, 318f
distribution of, under null model, 184–5 formula for, 182, 259
and Kendall’s shape space, 182
limits of, 185–6, 317–18, 364
and localization, 264–5, 291–2, 319
for relative warps, 368
and the truss, 95
Procrustes superposition, 14, 258–67
as display, 268f, 350f, 351f, 365
formula for, 263
for purely inhomogeneous transformations, 291–2
as misspecification, 260–2
principal and partial warps are at, 324, 326, 344, 347
relative warps are at, 344, 347
projection, onto shape subspaces, 271, 282, 284, 303, 312–14
Proclus (landmark), 73, 220–1
protists, homology for, 360
pseudolandmarks, see deficient landmarks
Pterygomaxillary fissure (landmark), 71, 335–9
purely inhomogeneous transformations, 92, 276f, 279, 287–302, 320
as quadratic transformations, 307, 368
see also rigid motion; square, transformation of

quadratic forms, see bending energy; covariance matrix; eigenanalysis, relative
quadratic transformations, 302–12
basis for, 303
canonical form for, 304–5
no metric for, 341, 368
special cases of, 305–9
and the triharmonic thin-plate spline, 368
quadratic variation, see bending energy

quadrilaterals
components of shape change for, 293, 297–302
flatness criterion for, 92
interpoints of, 253–4
testing uniformity of changes in, 287
trisects of, 222–5
and the truss, 95
see also rectangle; rhombus; square questions in morphometrics, 3, 18, 256–7, 363–9, 372

radius
anisotropy as, 212–13, 389–90
and outline analysis, 45–6, 360
of shape space, 153
as variable, 78, 82–3

Ramal triple point (landmark), 82–3
random walk, 369, 393–400
range statistic, 396–400
rat, calvarial growth in (example), 69f, 103–8, 260–1, 283–5, 297–8, 311–12, 347–57
data listing, 408–14
landmark definitions, 67
ratios
from analysis of covariance of distances, 118–21
and angles at 45°, 217–21
discriminatory factors, 84–5
of distances
insufficient for reporting findings, 225–7
in terms of shape coordinates, 138–41
extreme, for many landmarks, 222–7
for purely inhomogeneous change, 289–90
and the shape-change tensor, 217–21
shape coordinates as, 7, 135–6, 142, 226
as shape variables, 126, 137–9
statistics of, 24, 83–5
see also anisotropy; aspect ratio; cross-ratio; distances; shape coordinates; shape variables
reading-list, auxiliary
geometry, 52–4
morphometrics, 50–1
statistics, 51–2
rectangle, 193–4, 217–18
registration, two-point, 128–30, 200, 271f
principal axes and, 209
and Procrustes analysis, 265–7
see also baseline; circle construction regression
in allometry studies, 103–7, 175–6, 231, 239, 243
in biometrics, 35–6, 59
of covariances, 39, 42
in ecophenotypy studies, 242–5
for factor loadings, 103–7, 111
on Group Shape, 117
and the metric for shape space, 186, 365
multiple, inutility of, for explanation, 37, 113–14, 117, 155–6
polynomial, upon General Size, 103–7
Procrustes analysis as, 262–5, 268
and shape averaging, 158
of shape coordinates on factors, 102, 156, 240, 243–4
stepwise, 365
uniform component as a, 274
see also analysis of covariance; canonical correlations analysis; canonical variates analysis; discriminant function analysis; residuals
relative eigenanalysis, see eigenanalysis, relative
relative warps, 15, 25, 339–57, 365
defined, 344
as growth gradient, 347–54
features, 368
scores on, 345, 350–4
zeroth, see uniform components, principal components of residuals, regression from allometry, 25
in allometry, 96–7
and averaging of form, 158
and Centroid Size, 105–7, 178
of covariances, 41, 97–8
and factors, 241, 244
from factors, and uniform transformations, 283
and finite elements, 255
from General Size, and timing, 105–7
the inhomogeneous transformation as a residual, 293, 299, 301
and localization, 322
from Procrustes fits, 260–1, 264–5, 267–8, 330
from rigid motion, 313–14
shape coordinates for, 240, 244
from the uniform factor model, 278–80; see also purely inhomogeneous transformations; quadratic transformations from uniform transformations, 285–92, 297–8
testing, 255, 282
rhombus, 193, 198, 217–18
Riemannian submersion, 182, 225
rigid motion, as transformation, 11, 13–14
choice of baseline for, 10–11, 291, 313
fitting, 313–14
and Procrustes analysis, 261–2
and purely inhomogeneous transformations, 288, 291, 297
as subspaces of shape space, 25
see also purely inhomogeneous transformations
rigid triangulation, as basis for shape space, 137–8, 141, 271f
routine morphometric procedures, 358–9, 361–5, 370
RTP, see Ramal triple point
truer, 127, 141
for anisotropy, 388

Index 432
salience, 42
t and covariance matrix for estimating geometric components, 283 and cross-ratio methods, 227 and finite-element methods, 253 and random walk, 398 and Τ 2, 236
scale change, 127, 176–8, 199, 382; see also Centroid Size scale, geometrical of bending energy, 345–6 of directional derivatives, 331 of inclusions, 382 of morphometric information, 346 of warps, 287, 324–39, 345–6 see also size, geometric Sella (landmark), 71–2, 247–8, 298–9, 335–9
SER, see Ethmoid registration SES, see Spheno-ethmoid synchondrosis sexual dimorphism, in human craniofacial growth, 232–5
shape averaging of, see average shape as “character,” 269–70 definitions of equivalence classes of landmark configurations, 126, 180–1 ratios of constructed interlandmark distances, 137–40 vectors of size variables divided by geometric scale, 126 features of, see shape space, subspaces of shape coordinates, 2–3, 6–12, 17–18, 22, 125–8, 361–3 autocorrelation of, 238–9 averaging across a midline, 7 over a sample, see average shape baseline and, 130–3, 209, 391–3 changes, small, approximations for, 208–11 covariances of, 150–1, 274–6, 283, 363 definition of, 2, 129f first computations, 8–9, 12, 361–2 formulas for, 129–30 in terms of perturbations, 146 and Kendall’s shape space, 179, 181 mean differences in, see multivariate analysis of variance; Τ 2 and Partial Least Squares, 42, 239 and Procrustes analysis, 264–5 as ratios, 7–8, 17–18, 130, 135–6 and the shape-change tensor, 199–211

and spiral form, 314–15 and subspaces of shape space, 362–3 sufficiency of, for statistics of shape, 3, 7, 141 uncorrelated pairs of, 151–3 and variables, 133–7, 214–22 shape distance, 56, 316–19, 340–41; see also anisotropy; bending energy; Procrustes distance shape manifold, see Kendall’s shape space shape space bases for, see basis; shape coordinates directions in, naming, 214–22, 318f geometry of, see geometry of shape space; Kendall’s shape space lines in, 204, 386–8 means in, see average shape metrics for, see anisotropy; bending energy; Procrustes distance (principal) components in, 242–3, 279, 340–1; see also relative warps and size, 13; see also allometry subspaces of, 13–16, 18–19, 24–6, 159, 185, 270–357, 362, 364 analyses of, separately by subspace, 38, 341, 353–7 projection onto, as explanation, see projection see also principal warps; quadratic transformations; uniform transformations uniqueness of, for landmark data, 13, 22–3, 256, 362 shape variables, 125–6 from analysis of covariance of distances, 118–19 angles between, 136–7, 226 anisotropy as metric for, 215, 218 autocorrelation of, 238–9 bending energy as metric for, 340–1 covariance with size, see allometry from distances, 120–7, 137–9 ellipses and, 212 from finite elements, 252 generating, 187–8, 214–22 geometry of, 136–7 an involution of, 135–7 from principal axes, 218–21, 366 from shape coordinates, 214–17 in the shape-coordinate plane, 133–5 see also ratios; shape coordinates, shape space shear (deformation), see uniform components; uniform transformations along baseline, 219–21 shear (multivariate technique), 49, 121–4 significance tests, 159, 175, 282, 396; see also F; Τ 2 single-factor model in shape space, 153–6 for allometry, 175, 239–40, 243–4 for size variables, 96–108 and uniform component estimation, 277–9 singularity, locus of, 253–4 singular-value decomposition, 43, 55, 77 size adjustment for, 96, 123–4; see also analysis of covariance; regression; residuals and allometry, 96–108 in asymmetry studies, 270 differences, testing, 176–8 geometric, 13, 118, 121, 123, 126 restoration of, to shape findings, 234, 353–7 see also Centroid Size; General Size; size variables size allometry, see allometry size loadings, 101–6, 115–16 size variables, 89–95 and allometry, 96–108 basis for space of, 90–1 covariance with shape, on the null model, 167–76 and General Size, 96–108 and group differences, 108–18 and homology, 56–8, 254 limits of, 120 logarithms of, 101–2, 176 orthogonality with shape, 168, 171 principal axes as, 201f; see also transects ratios of, 118–21, 137–41, 222–7 reduction to sum of two constructed distances, 92 skeleton (image processing), see medial axis skeleton, landmarks on, see specific names, such as Nasion, slope, as parameter, 190 SOS, see Spheno-occipital synchondrosis space, geometry of, 53 Spheno-ethmoid registration, see Ethmoid registration Spheno-ethmoid synchondrosis, 67, 312, 355f Spheno-occipital synchondrosis, 67, 312, 355f sphere of directions in principal component analysis, 340 in Procrustes analysis, 318f spherical blackboard, 181 spherical harmonics, 14 spiral form, 314–15 sphenoid, see thin plate spline

433 Index
square, transformations of components of, 274–6, 293, 318f to kite, 30–1, 278f, 289–92 alternative versions of, 253f as principal warp, 319–20, 328, 331, 336, 344, 348 rotations, 296f, 318f to paralleloquadram, 188–99, 251, 274–6 to trapezoid, 291–2, 296–7; see also couple
stasis, evolutionary, 396f statistical equivalence, 93 statistics readings in, 51–2 see also multivariate analysis and names of quantity or method, e.g., regression, t
stereology, 49–50
STP, see Symplectic triple point strain ratio definition, 191 extremes of, 191–2, 222–4 for quadrilaterals, 224 see also anisotropy strain tensor, see tensor strains, principal, see principal strains subspaces, see shape spaces, subspaces of superposition, see Procrustes superposition; registration surfaces of constant shape distance, 318f information from, 87, 360–1 landmarks from, 65, 66, 360–1 literature of, 53
thin-plate splines as, 27–8f, 294f, 325f, 329–30f, 332–3f, 335–6f, 348–9f, 352f
symmetric axis, see medial axis
symmetric tensor, see tensor
symmetry, 166–7, 267–70 baseline for, 6 of Kendall’s shape space, 25–6, 181, 183–6 shape coordinates and, 7 see also asymmetry
Symplectic triple point (landmark), 82–3
synostosis, see Apert syndrome; Crouzon syndrome
systematics, 60
\(t \) (statistic), 177–8, 251
superseded by \(T^2 \), 8, 235–36
\(T^2 \) (statistic), 8–9, 22, 24, 116, 150, 159, 160–1, 162, 164, 166–7, 222, 229–30, 251, 298–9, 301 matched, 232–3 meaning of, 230, 236 and \(f \), 235–6 for uniform components, 281–7 formulas, 282
tangent-angle function, 46–8, 77, 86
tangent lines and planes and landmarks, 63f, 360–1 and relative eigenanalysis, 342–3 and the thin-plate spline, 377–82 tensor field, 22, 49–50 reporting, 254 singularity, locus of, 253 tensor, symmetric, as descriptor of shape change, 18, 22, 187–255 definition, 211 homogeneity of, over space, 189f, 253, 283f, 289–90, 298f in three dimensions, 165–6 see also triangles; uniform transformations teratogenesis, see alcohol; phenytoin
tetrahedra, statistical analysis of, 165 volume of, 92 see also three-dimensional data
examples
graphical, 31f, 69f, 72f, 74f, 76f, 10f, 102f, 126f, 321f, 329f, 332f, 334f, 376–82f; see also surfaces, thin-plate splines as from, 87, 360–1 numerical, 294–5, 320–1
formulas for, 32–3 history of, 30, 32 and image averaging, 366–7, 383–4 and inclusions, 382 as an interpolant, 30–4, 253–4 limits of, 359 and outline averaging, 366–7 pleasures of, 320 properties of, 33 for the purely inhomogeneous transformation, 28f, 293–6 reliability of, 253 see also bending energy; partial warps; principal warps; relative warps
three-dimensional data

traces
of triangles, 24, 201–3 and cross-ratios, 226–7 and reporting shape-coordinate findings, 234–5; 242, 245, 247, 249–50 of quadrilaterals, 223–4 the transect theorem, 222–5
transformation, geometric
literature of, 53–4 see also Cartesian transformations; interpolation; purely inhomogeneous transformations; quadratic transformations; square, transformations of; uniform transformations translation, see purely inhomogeneous transformations; rigid motion
trapezoid, see couple; square, transformations of, to trapezoid
Treacher Collins syndrome (example), 163
trend surface, see polynomial models
triangles, 187–255 approximate methods, 298–11 area of, 93, 170 canonical forms, 184, 264

diagram styles for, 228–9, 234

inclusions of changes between, 287–90, 298–9 displacement inside, 299 equilateral, see equilateral triangle

example triangles for, 8–9, 160–1, 227–51 as finite elements, 251
history of analyses for, 22

invisibility of, 227
isosceles, 226
medians of, and allometry, 172–3

multivariate analysis of, 131–2, 159, 172–4
principal components of, 242–3
Procrustes superposition of, 264–5 rigid triangulation by, 137, 138f, 271f, 283f searching over, 159, 222
and shape coordinates, 2, 9, 128–31 shape measures of, 133–5, 214–22 the size measure of, for allometry studies, 168–76

on the spherical blackboard, 181

sufficiency for extremes of strain, 222–5

in three dimensions, 164–7, 248–51

see also transsects

triharmonic equation, 368

triple points, as landmarks, 66, 82; see also medial axis
trusa, 51, 95–6, 158

U (function), 27–9, 32–3, 367–8 figure of, 27

Index 434

© Cambridge University Press www.cambridge.org
uniform components
examples of, 10, 280–1, 334
factor estimate of, 277–80, 362
principal components of, 10, 279, 353–7, 365, 366
and relative warp, 15, 153–7
standard error of, 290
uniform distribution of shape, 181–2
uniform shear, see uniform transformations
uniform transformations, 9–10, 270–87
algebra of, 188–99, 272–3
anisotropy as metric for, 26, 283–5
basis for, 273
and bending energy, 318f, 320, 321, 353
circle construction, assumed in, 202
elements, 9–10, 283–7, 299
factor estimation of, see uniform components
and finite elements, 253–5
fitting, 255, 274, 276–7
formula for, 273
growth of, 271–3; see also square
transformations of, to parallelogram
as polynomial, 273, 302
versus quadratic model, 304
and Procrustes superpositions, 260–2, 266–7
reporting, 284–5, 365f, 355–7, 366
residuals, localizing, 292, 299
versus rigid motion, 314
as a subspace of shape space, 13, 25, 273–4, 318f, 353
for symmetrized forms, 9–10
tests of, 255, 281–7, 299
in thin-plate spline analysis, 324, 327f, 335, 339f
and triangles, 277, 283
visualizations of, 31, 189f, 206f, 272
University of Michigan University School Study (example)
data listings, 400–6
in deformity studies, 246
growth findings, 71f, 106–7, 228–41, 248–51, 309–10
growth prediction, 238–9
landmarks of, 68–72
mandibular form in, 80–5, 166–7, 248–51
scatter of shape in, 133f, 229f
Upper vermilion (landmark), 7, 79
USU, see University of Michigan University School Study
variables
from the circle construction, 201f, 209f, 234, 243, 245, 247
extents as, 57, 119–20
from Fourier analysis, 46
geometric ordering of, 59–60, 228;
see also geometry, of shape space
latest, 42–44
from the medial axis, 82–3
morphometric, 2–3, 17, 21, 23, 36, 55–6; see also answers;
multivariate analysis, reporting
for purely inhomogeneous change, 290
sampling of, 398–400
scale of, and log transformations, 102
from tensor findings, 214–22
see also distances; multivariate
analysis; ratios; shape
coordinates; shape variables; size
variables
variance
of Cartesian coordinates, 149–50
"explained," 39
by projection onto shape
subspaces, 282, 284, 299, 301, 310, 311, 314
and factors, 113–14, 153–5
of shape coordinates, 142–50,
153–5, 283
of the uniform factor estimate, 280
per unit bending, see relative warps
Venus (example), 313–14
landmarks for, 74–5
visualization, 370–72
volume, as variable, 57, 85
formula for, 92
warps
blunt rigid motions, 330
and fractals, 346
see also partial warps; principal
warps; relative warps; thin-plate
spine
weight, as variable, 57
wings, insect, landmarks for, 268f
workstations, 19, 370–2