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Matroids and Rigid Structures

WALTER WHITELEY

Many engineering problems lead to a system of linear equations — a
represented matroid — whose rank controls critical qualitative features of the
example (Sugihara, 1984; 1985; White & Whiteley, 1983). We will outline a
selection of such matroids, drawn from recent work on the rigidity of spatial
structures, reconstruction of polyhedral pictures, and related geometric problems.

For these situations, the combinatorial pattern of the example determines
a sparse matrix pattern that has both a generic rank, for general ‘independent’
values of the non-zero entries, and a geometric rank, for special values for
the coordinates of the points, lines, and planes of the corresponding geometric
model. Increasingly, the generic rank of these examples has been studied by
matroid theoretic techniques. These geometric models provide nice illustrations
and applications of techniques such as matroid union, truncation, and
semimodular functions. The basic unsolved problems in these examples
highlight certain unsolved problems in matroid theory. Their study should
also lead to new results in matroid theory.

1.1. Bar Frameworks on the Line — the Graphic Matroid

We begin with the simplest example, which will introduce the vocabulary
and the basic pattern. We place a series of distinct points on a line, and
specify certain bars — pairs of joints which are to maintain their distance —
defining a bar framework on the line. We ask whether the entire framework
is ‘rigid’ — i.e. does any motion of the joints along the line, preserving these
distances, give all joints the same velocity, acceleration, etc.? Clearly a
framework has an underlying graph G = (V, E), with a vertex v; for each joint
p; and an undirected edge {i, j} for each bar {p;, p;}. In fact, we describe the
framework as G(p), where G is a graph without multiple edges or loops, and
p is an assignment of points p; to the vertices v;. If this graph is not connected,

© Cambridge University Press www.cambridge.org



http://www.cambridge.org/0521381657
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press
978-0-521-38165-9 - Matroid Applications
Edited by Neil White

Excerpt
More information
2 Walter Whiteley
Figure 1.1.
(a) o—o0—o0 o—o0
(b) o o o o o)

then each component can move separately in the framework, and the
framework is not rigid (Figure 1a). Conversely, a connected graph always
leads to a rigid framework (Figure 1.1b), since each bar ensures that its two
joints have the same motion on the line. This gives an informal proof of the
following result.

1.1.1. Proposition. A bar framework G(p) on the line is rigid if and only if the
underlying graph G is connected.

To extract a matrix, we make this argument a little more formal. Assume
the joints p; move along smooth paths p,(t). The length of a bar | p,(t)—p;(t)|,
and its square, remain constant. If we differentiate, this condition becomes

d
aﬁm@—m@?=[mﬂ—m®Hﬁm—pﬁﬂ=0

At ¢ =0, this is written (p; — p;)(p; — p;) = 0. If we have distinct joints on the
line, so that (p; — p;) # 0, this simplifies to (p; —p;) =0.

With this in mind, we define an infinitesimal motion of a bar framework
on the line G(p) as an assignment of a velocity u; along the line to each joint
p; such that u;—u;=0 for each bar {v;, v;}. For example, consider the
framework in Figure 1.1c. The four bars lead to four equations in the
unknowns u = (uy, Uy, Uz, Uy, Us):

Uy

1 0 -1 0 0 0
U,

01 -1 0 0 0
Uy [= .

00 1 -1 0 0
Uy

00 1 0 -1 0
| Us ]

In general, this system of linear equations is written R(G, p) x u’ =0, where
the rigidity matrix R(G, p) has a row for each edge of the graph and a column
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for each vertex, and o’ is the transpose of the vector of velocities. We note
that R(G, p) is the transpose of the usual matrix representation for the graph
over the reals: the rows are independent in R(G, p) if and only if the
corresponding edges are a forest (an independent set of edges in the cycle
matroid of the graph).

A trivial infinitesimal motion is the derivative of a rigid motion of the line
— i.e. a translation with all velocities equal. These form a one-dimensional
subspace of the solutions. An infinitesimally rigid framework on the line has
only these trivial infinitesimal motions, so the rigidity matrix has rank V| — 1.
This rank corresponds to a spanning tree on the vertices, or a basis for the
cycle matroid of the complete graph on |V| vertices. This proves the following
infinitesimal version of Proposition 1.1.1.

1.1.2. Proposition. A bar framework G(p) on the line is infinitesmially rigid if
and only if the underlying graph G is connected.

1.2. Bar Frameworks in the Plane

A bar framework in the plane is a graph G =(V, E) and an assignment p of
points p;e R? to the vertices v; such that p; # p; if {i, j} € E. If we differentiate
the condition that bars have constant length in any smooth motion, we have

d
g [P~ p;(01* = [pt) — p;()]-[pi(®) — P;()] = 0.

Accordingly, an infinitesimal motion of plane bar framework is an assignment
u of velocities u;€ R* to the joint such that

(p;—p;)'(w;—u;)=0 for each {i,j}eE.

A plane bar framework is infinitesimally rigid if all infinitesimal motions are
trivial: u; = s + B(p,)*, where s is a fixed translation vector, (x, y)* =(y, —x)
rotates the vector 90° counterclockwise, and f(p,)* represents a rotation
about the origin. (These infinitesimal rotations and translations are the
derivatives of smooth rigid motions of the plane.)

The system of equations for an infinitesimal motion has the form
R(G, p) x u' =0, where the rigidity matrix R(G, p) now has a row for each
edge of the graph and two columns for each vertex. The row for edge {i, j}
has the form

00 .. 00TPp—p 00 .. 00 p—p 00 .. 0 0]
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Figure 1.2.

il o M.

P3

(a) (b) (c) ©

1.2.1. Example. Consider the frameworks in Figure 1.2. The framework of
Figure 1.2a gives the rigidity matrix

waf

Xp=X3 Y1~V 0 0 X3—=X; V3=V 0 0 0 0
{1, 4} |30 —x2) 3i—y2) 0 0 0 0 3x;—x;) 3(y;—y) 0 0
{1, 5} Xy i 0 0 0 0 0 0 —X; =)
{23} 0 0 X=Xy V2—V3 Xz—X; X3—), 0 0 0 0
24 o 0 3x—x) 3(y-y) O 0 3(x;—x2) 3(y;—y2) 0 0
{2, 5} 0 0 X, V2 0 0 0 0 —-X; —Y
{3, 5} | 0 0 0 0 X3 Vs 0 0 —X3 ~y3J

The rows of this matrix are dependent and have rank 6. This leaves a
(10 — 6 = 4)-dimensional space of infinitesimal motions, including the non-trivial
motion shown in Figure 1.2b, which assigns zero velocity to all joints but
P, and gives p, a velocity perpendicular to the bars at p,. Thus the framework
is not infinitesimally rigid.

The infinitesimal motion is not the derivative of some smooth path for the
vertices. The framework is rigid — all smooth paths, or even continuous paths,
give frameworks congruent to the original framework. Figure 1.2c gives a
similar framework which has the same infinitesimal motions, but is not rigid.

These examples show that there is a difference in the plane between rigid
frameworks and infinitesimally rigid frameworks. A non-rigid plane framework
will have an analytic path of positions p(t) = (..., p;(t), ...), with all bar lengths
of p(t) the same as bars in p(0), but p(t) not congruent to p(0), forall 0 <t < 1
(Figure 1.2c). The first non-zero derivative of this path will be a non-trivial
infinitesemal motion. However, the converse is false: many infinitesimal
motions are not the derivative of an analytic path (recall Figure 1.2b). For
any framework, the independence of the rows of the rigidity matrix induces
a matroid on the edges of the graph. If ‘rigidity’ in a particular plane
framework were used to define an independence structure on the edges of a
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graph, this need not be a matroid (see Exercise 1.6). Therefore, we will restrict
ourselves, throughout this chapter, to the simpler concepts of infinitesimal
motions and infinitesimal rigidity.

The space of trivial plane infinitesimal motions has dimension 3, for
frameworks with at least two distinct joints. This space can be generated by
two translations in distinct directions and a rotation about any fixed point.
Thus an infinitesimally rigid framework with more than two joints will have
an |E| by 2|V] rigidity matrix of rank 2|V|—3. Our basic problem is to
determine which graphs G allow this matrix to have rank 2|V|—3 for at
least some plane frameworks G(p).

The independence structure of the rows of the rigidity matrix defines a
matroid on the edges of the complete graph on the vertices. This matroid
depends on the positions of the joints. If we vary the positions there are
‘generic’ positions that give a maximal collection of independent sets (for
example, positions where the coordinates are algebraically independent real
numbers). At these positions we have the generic rigidity matroid for |V|
vertices in the plane.

1.2.2. Example. Consider the framework in Figure 1.3a. With vertices as
indicated we have the rigidity matrix

@,b)[t 0 000 0 —-100 O 0 O
@,b)fo0 1 000 0 000 -1 0 0
@,by)ft 1 000 0 000 0 -1 -1
@.b)fo 0 =1t 00 0o 100 0 o0 O
@.b)0 0 =210 0 002 -1 0 0
@,b)l0 0 -1 10 0o 000 0 1 1
@,b)f0 0 001 -2 -1 20 0 0 0
@,b)l0 0 000 1 000 -1 0 0
(@ b)[0 0 001 -1 000 0 -1 1

The graph of the framework has |E|=2|V|—3, so the framework is
infinitesimally rigid if and only if the rows are independent. This independence
can be checked by deleting the final three columns and seeing that the
determinant of the 9 x 9 submatrix is non-zero. This framework is infinitesimally
rigid and the graph is generically rigid, and generically independent.

Consider any realization with distinct joints a,, a,, a5, b;, b,, b; on a unit
circle centred at the origin (Figure 1.3b). This has a non-trivial ‘in—out’
infinitesimal motion (Figure 1.3c):

for joints a; take the velocity a; =a,;

for joints b; take the velocity b= —b,.
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Figure 1.3.
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These velocities preserve the length of all bars (a;, b;), since
(a;—b;) (a;— b;) =(a;—b;)-(a; +b;)=(a,) (@)— (b)) (b;)=1—-1=0.

This infinitesimal motion is non-trivial. Letting 6 #0 be the angle between
the unit vectors a, and a,, we show that the distance (a; —a,) is changing
instantaneously:

(a, —a,) (@, —a;)=(a,) (a,) — 2(a,) (a;) + (@,) (@) =1+1—2c0s 6 > 0.

Thus this special position is not generic (see Exercise 1.9).

We want to characterize the graphs of isostatic plane frameworks — minimal
infinitesimally rigid frameworks in the sense that removing any one bar
introduces a non-trivial infinitesimal motion. These graphs, of size |E| = 2|V| — 3,
are the bases of the generic rigidity matroid ‘of the complete graph’ on the
set of vertices.

Thus an isostatic framework corresponds to a row basis for the rigidity
matrix of any infinitesimally rigid framework extending the framework. The
independence of such a set of edges is determined by maximal minors of the
rigidity matrix. This independence is generic in the sense that these minors
are non-zero polynomials in the positions p;. If such a polynomial is non-zero
for some position G(p), then almost all qe R*"'give isostatic frameworks G(q)
(see Section 1.7).

More surprisingly, for points where this matrix and all its minors have
the maximal rank achieved for qeR*"), infinitesimal rigidity and any
reasonable form of local rigidity actually coincide (see, for example, Exercise 1.7).

We note that throughout this chapter the generic matroids defined on the
complete graph of |V| vertices are symmetric on the vertices —any permutation
of the vertices does not change the independence of a set of edges. As a
convention, we write the attached vertices for a subset of edges E' as V".
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1.2.3. Theorem. For a graph G, with at least two vertices, the following are
equivalent conditions:
(i) G has some positions G(p) as an isostatic plane framework;
(ii) |E| =2|V|— 3 and for all proper subsets of edges E' incident with vertices
V', |E|<2|V'|-3;
(iii) adding any edge to E (including doubling an edge) gives an edge set
covered by two edge-disjoint spanning trees.

Proof. (i) = (ii): For an isostatic plane framework G(p) on at least two vertices,
the rows of the rigidity matrix have rank |E| = 2|V| — 3. If any proper subset
of edges has |E'| > 2|V’| — 3, the corresponding rows are dependent. Since
G(p) is independent, we conclude that |E’| <2|V’| — 3 for all proper subsets.

(ii)<>(iii): The count f(E') = 2|V’| — 3 defines a non-decreasing semimodular
function on sets of edges, which is non-negative on non-empty sets (see
Exercise 1.1). This semimodular function defines a matroid by the standard
property:

E is independent if and only if |E'| < f(E’) for all proper subsets E'. (1.1)
This count has the form f(E’) = (2|V’| — 2) — 1 which shows that the matroid
for f is a Dilworth truncation of the matroid defined by the semimodular
function g(E’) = 2(|V’| — 1). In turn, the semimodular function g represents a
matroid union of two copies of the matroid given by the sesmimodular function
h(E') = |V| — 1 (the cycle matroid of the graph). Thus a graph is independent
in the matroid of f if and only if adding any edge (including doubling an
edge) gives a graph covered by two edge-disjoint forests.

Before we prove (iii)=>(i), we need a lemma about a simpler matrix that
has rank 2|V| — 2 (matching the function g). For a graph G = (¥, E), including
possible multiple edges, a 2-frame G(d) is an assignment of directions d, e R2
to the edges. An infinitesimal motion of the 2-frame G(d) is an assignment of
velocities u; € R? to the vertices such that

d,-(w;—u;)=0 for every edge e joining v; and v; (i < j)-
This system of equations defines the rigidity matrix R(G,d) for the 2-frame.

1.2.4. Lemma. The rows of the rigidity matrix of a generic 2-frame G(d) are
independent if and only if G is the union of two edge-disjoint forests.

Proof. Take the two forests F, and F,. For all edges in the first forest, we
assign the direction (1, 0). For all edges in the second forest, we assign the
direction (0, 1). If we reorder the rows and columns of this rigidity matrix,
placing all second columns of vertices to the right, and all rows for the second
forest at the bottom, we have a pattern:

I:[Fl] [0]]
(0] [F.]
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where [F, ] and [F,] are the standard matrices representing the two forests
over the reals. Thus the blocks [F;] and [F,] have non-zero minors on all
their rows, and the entire matrix also has a non-zero minor on all the rows.
We conclude that the rows are independent.

Conversely, if the rows are independent, we can reorder the columns as
above. The independence guarantees a non-zero minor on all the rows. Using
a Laplace expansion on the two blocks, there are non-zero minors on comple-
mentary sets of rows. Each of these non-zero minors on the matrix represent-
ing the graphic matroid must correspond to a forest, as required. d

Proof of Theorem 1.2.3 (continued). (iii)=(i) Assume that adding any edge to
E (including doubling an edge) gives an edge set covered by two edge-disjoint
forests. We show that this gives independent rows in the rigidity matrix for
some (almost all) choices of the points.

Take a 2-frame G(d) with algebraically independent directions for the edges.
By our assumption, adding any edge (or doubling any edge) between any
pair of vertices gives an independent 2-frame E*. Therefore, the 2-frame on
E has an infinitesimal motion u;; that has different velocities on the two
vertices of the added edge. Taking linear combinations of these u;; there is
an infinitisemal motion u that assigns distinct velocities u; = (s;, t;) to each
of the vertices of G.

To create the independent framework G(p), we set p,=(—t¢,, s;). Since
u; #u;, we have p; # p; for each edge {i, j}, as required in a framework. We
claim that the rigidity matrix of G(p) has rows parallel to the rows of the
original 2-frame G(d). Clearly

(Pi—l’j)'(“i_“j)=(_ti+ L si_sj)'(si_sja ti_tj)=0=de'(“i_“j)-
Since u; —u; # 0, this means (p; — p;) = B.d, for some non-zero scalar f,. The
rigidity matrix of the framework is equivalent to the rigidity matrix of the
independent 2-frame. We conclude that a set of edges satisfying condition
(1.1) has been realized as an independent (therefore isostatic) bar framework.
(The infinitesimal motion u of the 2-frame is a rotation of this framework
around the origin.)

This completes the proof. O

Figure 1.4 shows some other examples of the graphs of isostatic frameworks
in the plane (Figure 1.4a) and graphs of circuits in the plane generic rigidity
matroid (Figure 1.4b) with |E| = 2|V| — 2,and |E'| < 2|V’| — 3 for proper subsets.

The semimodular count of Theorem 1.2.3(ii) converts to a criterion for
graphs of infinitesimally rigid frameworks. We state the theorem without proof.

1.2.5. Corollary. (Lovdsz & Yemini, 1982) A graph has realizations as an
infinitesimally rigid plane framework if and only if for every partition of the
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edges into non-empty subsets (... E ...), with vertices V¥ incident with the edges E’,

Y@V =3)=2|V|-3.
i

Figure 1.5 gives a simple example of a 5-connected graph, in a vertex sense,
which is never infinitesimally rigid by this criterion: take the eight K graphs
as sets of the partition, and all other edges as singletons and apply Corollary
1.2.5. However, every graph which is 6-connected in a vertex sense is
generically rigid (Exercise 1.16).

The dependence of rows in the rigidity matrix, or dependence of bars in
the framework, also has a physical interpretation. A self-stress on a framework
is an assignment of scalars w,; to the bars {p;, p;} such that for each joint
p; there is an equilibrium (Figures 1.6a, b):

Figure 1.4. (a) |E|=2|V| -3, |[E| <2|V'| - 3; (b) |E| =2|V| -2, |E| <2|V'| - 3.

\

(a)

Figure 1.5.
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Figure 1.6.
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©

(d) \ (e) \ ¢y

Y w;(p;—p;)=0 (sum over all edges {i, j} incident with p,).
j

Thus a self-stress is equivalent to a row dependence. If w,; <0, we interpret
this as a compression in the bar — a force w;(p;—p;) at p;, and a force
w;;(p; — p;) at p;. If w;;> 0, this is a tension in the bar (Figure 1.6c).

In the same spirit, the row space of the rigidity matrix is interpreted as
the space of loads L; resolved by forces in the bars of the framework (Figure
1.6d,e,f):

L;+ Y ;(p;—p;)=0 (sum over all edges {i, j} incident with p,).
j

These resolved loads satisfy an additional property of global static equilibrium,
defined below (see Exercise 1.17). Thus an equilibrium load is an assignment
L; of vectors to the vertices that satisfies the three equilibrium equations

YL;=0 and YL;xp;=0

where X represents a cross product in 3-space. A framework is statically
rigid if all equilibrium loads on its joints are resolved.

We note that a single point is trivially both infinitesimally rigid and
statically rigid in the plane. A single bar has only a one-dimensional space
of equilibrium loads: a(p, —p,) at p, and a(p, —p,) at p,. Since these are
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