FUNDAMENTAL SOLUTIONS IN ELASTODYNAMICS

This work is a compilation of fundamental solutions (or Green's functions) for classical or canonical problems in elastodynamics, presented with a common format and notation. These formulas describe the displacements and stresses elicited by transient and harmonic sources in solid elastic media such as full spaces, half-spaces, and strata and plates in both two and three dimensions, using the three major coordinate systems (Cartesian, cylindrical, and spherical). Such formulas are useful for numerical methods and practical application to problems of wave propagation in elasticity, soil dynamics, earthquake engineering, mechanical vibration, or geophysics. Together with the plots of the response functions, this work should serve as a valuable reference to engineers and scientists alike. These formulas were heretofore found only scattered throughout the literature. The solutions are tabulated without proof, but giving reference to appropriate modern papers and books containing full derivations. Most formulas in the book have been programmed and tested within the MATLAB environment, and the programs thus developed are both listed and available for free download.

Eduardo Kausel earned his first professional degree in 1967, graduating as a civil engineer from the University of Chile, and then worked at Chile's National Electricity Company. In 1969 he carried out postgraduate studies at the Technical University in Darmstadt. He earned his Master of Science (1972) and Doctor of Science (1974) degrees from MIT. Following graduation, Dr. Kausel worked at Stone and Webster Engineering Corporation in Boston, and then joined the MIT faculty in 1978, where he has remained since. He is a registered professional engineer in the State of Massachusetts, is a senior member of various professional organizations (ASCE, SSA, EERI, IACMG), and has extensive experience as a consulting engineer.

Among the honors he has received are a 1989 Japanese Government Research Award for Foreign Specialists from the Science and Technology Agency, a 1992 Honorary Faculty Membership in Epsilon Chi, the 1994 Konrad Zuse Guest Professorship at the University of Hamburg in Germany, the Humboldt Prize from the German Government in 2000, and the 2001 MIT-CEE Award for Conspicuously Effective Teaching.

Dr. Kausel is best known for his work on dynamic soil-structure interaction, and for his very successful Green's functions (fundamental solutions) for the dynamic analysis of layered media, which are incorporated in a now widely used program. Dr. Kausel is the author of more than 150 technical papers and reports in the areas of structural dynamics, earthquake engineering, and computational mechanics.

Cambridge University Press 978-0-521-37599-3 - Fundamental Solutions in Elastodynamics: A Compendium Eduardo Kausel Frontmatter More information Cambridge University Press 978-0-521-37599-3 - Fundamental Solutions in Elastodynamics: A Compendium Eduardo Kausel Frontmatter <u>More information</u>

Fundamental Solutions in Elastodynamics

A Compendium

EDUARDO KAUSEL

Massachusetts Institute of Technology

CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Tokyo, Mexico City

Cambridge University Press 32 Avenue of the Americas, New York, NY 10013-2473, USA

www.cambridge.org Information on this title: www.cambridge.org/9780521375993

© Eduardo Kausel 2006

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2006 First paperback edition 2011

A catalog record for this publication is available from the British Library

Library of Congress Cataloging in Publication data

Kausel, E.
Fundamental solutions in elastodynamics : a compendium / Eduardo Kausel. p. cm.
Includes bibliographical references.
ISBN-13: 978-0-521-85570-9
ISBN-10: 0-521-85570-5
I. Elasticity. 2. Dynamics. 3. Green's functions. I. Title.
QA931.K375 2006
531'.382 - dc22 2005020866

ISBN 978-0-521-85570-9 Hardback ISBN 978-0-521-37599-3 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

Preface

page ix

SECTION I: PRELIMINARIES

1.	Fun	damentals	1
	1.1	Notation and table of symbols	1
	1.2	Sign convention	4
	1.3	Coordinate systems and differential operators	4
		1.3.1 Cartesian coordinates	4
		1.3.2 Cylindrical coordinates	6
		1.3.3 Spherical coordinates	9
	1.4	Strains, stresses, and the elastic wave equation	13
		1.4.1 Cartesian coordinates	13
		1.4.2 Cylindrical coordinates	16
		1.4.3 Spherical coordinates	21
2.	Dip	oles	27
	2.1	Point dipoles or doublets: single couples and tensile crack	
		sources	27
	2.2	Line dipoles	29
	2.3	-	30
	2.4	•	30
	2.5	Blast loads (explosive line and point sources)	31
	2.6	Dipoles in cylindrical coordinates	32
SEC	CTIO	N II: FULL SPACE PROBLEMS	
3.	Two	-dimensional problems in full, homogeneous spaces	35
	3.1	Fundamental identities and definitions	35
	3.2	Anti-plane line load (SH waves)	35

- 3.2 Anti-plane line load (SH waves)
- SH line load in an orthotropic space 3.3 3.4 In-plane line load (SV-P waves)

36

38

vi

Contents

	3.5	Dipoles in plane strain	40	
	3.6	Line blast source: suddenly applied pressure	43	
	3.7	Cylindrical cavity subjected to pulsating pressure	44	
4.	Thre	Three-dimensional problems in full, homogeneous spaces		
	4.1	Fundamental identities and definitions	48	
	4.2	Point load (Stokes problem)	48	
	4.3	Tension cracks	52	
	4.4	Double couples (seismic moments)	54	
	4.5	Torsional point source	55	
	4.6	Torsional point source with vertical axis	57	
	4.7	Point blast source	58	
	4.8	Spherical cavity subjected to arbitrary pressure	59	
	4.9	Spatially harmonic line source $(2\frac{1}{2}$ -D problem)	63	
SEC	CTIO	N III: HALF-SPACE PROBLEMS		
5.	Two	-dimensional problems in homogeneous half-spaces	69	
	5.1	Half-plane, SH line source and receiver anywhere	69	
	5.2	SH line load in an orthotropic half-plane	70	
	5.3	Half-plane, SV-P source and receiver at surface (Lamb's		
		problem)	71	
	5.4	Half-plane, SV-P source on surface, receiver at interior, or vice		
		versa	73	
	5.5	Half-plane, line blast load applied in its interior (Garvin's problem)	76	
		problem)	70	
6.	Thre	ee-dimensional problems in homogeneous half-spaces	78	
	6.1	3-D half-space, suddenly applied vertical point load on its		
		surface (Pekeris-Mooney's problem)	78	
	6.2	3-D half-space, suddenly applied horizontal point load on its		
		surface (Chao's problem)	81	
	6.3	3-D half-space, buried torsional point source with vertical axis	83	
SEC	CTIO	N IV: PLATES AND STRATA		
7.	Two	-dimensional problems in homogeneous plates and strata	87	
	7.1	Plate subjected to SH line source	87	
		7.1.1 Solution using the method of images	87	
		7.1.2 Normal mode solution	87	
	7.2	Stratum subjected to SH line source	88	
		7.2.1 Solution using the method of images	89	
		7.2.2 Normal mode solution	90	
	7.3	Plate with mixed boundary conditions subjected to SV-P line		
		source	90	
		7.3.1 Solution using the method of images	91	
		7.3.2 Normal mode solution	92	

CAMBRIDGE

Contents

SEC	CTION	NV: ANALYTICAL AND NUMERICAL METHODS		
	Rea	d me first	97	
8.	. Solution to the Helmholtz and wave equations			
	8.1	Summary of results	98	
	8.2	Scalar Helmholtz equation in Cartesian coordinates	101	
	8.3	Vector Helmholtz equation in Cartesian coordinates	102	
	8.4	Elastic wave equation in Cartesian coordinates	104	
		8.4.1 Horizontally stratified media, plane strain	105	
	8.5	Scalar Helmholtz equation in cylindrical coordinates	108	
	8.6	Vector Helmholtz equation in cylindrical coordinates	109	
	8.7	Elastic wave equation in cylindrical coordinates	110 112	
		8.7.1 Horizontally stratified media8.7.2 Radially stratified media	112	
	8.8	Scalar Helmholtz equation in spherical coordinates	114	
	8.9	Vector Helmholtz equation in spherical coordinates	117	
		Elastic wave equation in spherical coordinates	120	
9.				
).		-		
	9.1 9.2	Cartesian coordinates Cylindrical coordinates	125 130	
	9.2	9.2.1 Horizontally stratified media	130	
		9.2.2 Cylindrically stratified media	136	
	9.3	Spherical coordinates	137	
10.	Stiffness matrix method for layered media 140			
	10.1	Summary of method	141	
	10.2	Stiffness matrix method in Cartesian coordinates	142	
		10.2.1 Analytic continuation in the layers	148	
		10.2.2 Numerical computation of stiffness matrices	150	
		10.2.3 Summary of computation	151	
	10.3	2	159	
		10.3.1 Horizontally layered system10.3.2 Radially layered system	160 164	
	10.4		104	
	10.4	10.4.1 Properties and use of impedance matrices	180	
		10.4.2 Asymmetry	180	
		10.4.3 Expansion of source and displacements into spherical		
		harmonics	181	
		10.4.4 Rigid body spheroidal modes	182	
SEC	CTION	NVI: APPENDICES		
11.	Basi	c properties of mathematical functions	185	
	11.1	Bessel functions	185	
		11.1.1 Differential equation	185	
		11.1.2 Recurrence relations	185	

viii

Contents

		11.1.3 Derivatives	186
		11.1.4 Wronskians	186
		11.1.5 Orthogonality conditions	186
		11.1.6 Useful integrals	187
	11.2	Spherical Bessel functions	187
		11.2.1 Differential equation	187
		11.2.2 Trigonometric representations	188
		11.2.3 Recurrence relations	189
	11.3	Legendre polynomials	189
		11.3.1 Differential equation	189
		11.3.2 Rodrigues's formula	190
		11.3.3 Trigonometric expansion $(x = \cos \phi)$	190
		11.3.4 Recurrence relations	190
		11.3.5 Orthogonality condition	190
		11.3.6 Expansion in Legendre series	191
	11.4	Associated Legendre functions (spheroidal harmonics)	191
		11.4.1 Differential equation	191
		11.4.2 Recurrence relations	192
		11.4.3 Orthogonality conditions	192
		11.4.4 Orthogonality of co-latitude matrix	193
		11.4.5 Expansion of arbitrary function in spheroidal	
		harmonics	193
		11.4.6 Leibniz rule for the derivative of a product of two	
		functions	193
12.	Brief listing of integral transforms		194
	12.1	Fourier transforms	194
	12.2	Hankel transforms	196
	12.3	Spherical Hankel transforms	197
13.	MA	ГLAB programs	198

Preface

We present in this work a collection of fundamental solutions, or so-called *Green's functions*, for some classical or canonical problems in elastodynamics. Such formulas provide the dynamic response functions for transient point sources acting within isotropic, elastic media, in both the frequency domain and the time domain, and in both two and three dimensions. The bodies considered are full spaces, half-spaces, and plates of infinite lateral extent, while the sources range from point and line forces to torques, seismic moments, and pressure pulses. By appropriate convolutions, these solutions can be extended to spatially distributed sources and/or sources with an arbitrary variation in time.

These fundamental solutions, as their name implies, constitute invaluable tools for a large class of numerical solution techniques for wave propagation problems in elasticity, soil dynamics, earthquake engineering, or geophysics. Examples are the Boundary Integral (or element) Method (BIM), which is often used to obtain the solution to wave propagation problems in finite bodies of irregular shape, even while working with the Green's functions for a full space.

The solutions included herein are found scattered throughout the literature, and no single book was found to deal with them all in one place. In addition, each author, paper, or book uses sign conventions and symbols that differ from one another, or they include only partial results, say only the solution in the frequency domain or for some particular value of Poisson's ratio. Sometimes, published results are also displayed in unconventional manners, for example, taking forces to be positive down, but displacements up, or scaling the displays in unusual ways or using too small a scale, and so forth. Thus, it was felt that a compendium of the known solutions in a common format would serve a useful purpose. With this in mind, we use throughout a consistent notation, coordinate systems, and sign convention, which should greatly facilitate the application of these fundamental solutions. Also, while we anguished initially at the choice of symbols for the angles in spherical coordinates, we decided in the end to use θ for the azimuth and ϕ for the polar angle. Although this contravenes the common notation, it provides consistency between spherical and cylindrical coordinates and eases the transition between one and the other system.

We tabulate these solutions herein without proof, giving reference to appropriate modern papers and books containing full derivations, but making no effort at establishing the original sources of the derivations or, for that matter, providing a historical account of CAMBRIDGE

х

Preface

these solutions. In some cases, we give no references, in which case we have developed the formulae ourselves using established methods, either because an appropriate reference was not known to us, not readily available, or for purely pragmatic reasons. Yet, recognizing that these are all classical problems, we do not claim to have discovered new formulas. Also, the tables may not necessarily be complete in that solutions for some additional classical problems, or important extensions to these, may exist of which we may be unaware. If and when these are brought to our attention, we shall be happy to consider them with proper credit when preparing a revised version of this work.

Finally, we have programmed most formulas within the MATLAB or other programming environment, and provide plots of response functions that could be used to verify the correctness of a particular implementation. Also, we have made every effort at checking the formulas themselves for correctness and dimensional consistency. Nonetheless, the possibility always exists that errors may remain undetected in some of these formulas. If the reader should find any such errors, we shall be thankful if they are brought to our attention.

Eduardo Kausel

Cambridge, September 2005