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Spiral waves in Saturn’s rings

Jack J. Lissauer*
State University of New York, Stony Brook, USA

Abstract Spiral density waves and spiral bending waves have been observed at dozens of
locations within Saturn’s rings. These waves are excited by resonant gravitational perturba-
tions from moons orbiting outside the ring system. Modelling of spiral waves yields the best
available estimates for the mass and the thickness of Saturn’s ring system. Angular momen-
tum transport due to spiral density waves may cause significant orbital evolution of Saturn’s
rings and inner moons. Similar angular momentum transfer may occur in other astrophysical
systems such as protoplanetary discs, binary star systems with discs and spiral galaxies with
satellites.

1 Introduction

Saturn’s ring system was the first astrophysical disc to be discovered. When Galileo
observed the rings in 1610, he believed them to be two giant moons in orbit about the
planet. However, these “moons” appeared fixed in position, unlike the four satellites
of Jupiter which he had previously observed. Moreover, Saturn’s “moons” had disap-
peared completely by the time Galileo resumed his observations of the planet in 1612.
Many explanations were put forth to explain Saturn’s “strange appendages”, which
grew, shrank and disappeared every 15 years. In 1655, Huygens finally deduced the
correct explanation, that Saturn’s strange appendages are a flattened disc of material
in Saturn’s equatorial plane, which appear to vanish when the Earth passes through the
plane of the disc (Figure 1). The length of time between Galileo’s first observations of
Saturn’s rings and Huygens’ correct explanation was due in part to the poor resolution
of early telescopes. However, a greater difficulty was recognition of the possibility and
plausibility of astrophysical disc systems. Contrast this to the situation today, when
almost any flattened object observed in the heavens is initially suspected of being a
disc.

The understanding of Saturn’s ring system progressed slowly in the three centuries
following Huygens [see Alexander (1962) for a historical review]. During this period,
attention gradually shifted away from Saturn’s rings as other astrophysical discs were
observed (e.g. spiral galaxies) or proposed based on theoretical considerations (e.g. the
protoplanetary disc, Kant 1745, Laplace 1796).

Similarities between Saturn’s rings and spiral galaxies were first remarked upon
by Maxwell (1859) “I am not aware that any practical use has been made of Saturn’s
Rings ... But when we contemplate the Rings from a purely scientific point of view,
they become the most remarkable bodies in the heavens, except, perhaps, those still less
useful bodies — the spiral nebulae”. Today we know that the type of waves responsible
for the grand design spiral structure observed in many disc galaxies (Lin & Shu 1964)
are also present on much smaller scale within Saturn’s rings (Cuzzi et al. 1981). The
presence of density waves within Saturn’s rings was predicted on theoretical grounds by
Goldreich & Tremaine (1978a). Spiral bending waves, first proposed to explain galactic
warps (Hunter & Toomre 1969), have also been observed within the rings of Saturn

* Alfred P. Sloan Research Fellow
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Figure 1. Schematic of Saturn and its rings as viewed
from Earth at various longitudes of Saturn’s orbit.

(Shu, Cuzzi & Lissauer 1983, henceforth SCL). Angular momentum transport by spiral
density waves may be important to Saturn’s rings, the proto-solar nebula, galaxies and
other astrophysical accretion discs.

Knowledge of planetary rings increased manifold during the decade from 1977 to
1986. Within this period ring systems were discovered about Uranus (Elliot et al. 1977),
Jupiter (Smith et al. 1979) and Neptune (Hubbard et al. 1986). Spacecraft visited all
of the ringed planets except Neptune, including three flybys of Saturn. Theoretical
developments advanced almost as rapidly as observations.

Each of the planetary ring systems has its own distinctive character. Good general
reviews are available for each ring system (Jupiter: Burns et al. 1984; Saturn: Cuzzi et
al. 1984; Uranus: Cuzzi & Esposito 1987; Neptune: Nicholson et al. 1989). This review
will focus on spiral density waves and spiral bending waves in planetary rings. Spiral
waves generated by gravitational perturbations of external moons have been observed at
several dozen locations within Saturn’s rings and have tentatively been detected within
the rings of Uranus (Horn et al. 1988). They represent one of the best understood
forms of structure within planetary rings, and have been very useful as diagnostics of
ring properties such as surface mass density and local thickness. However, the angular
momentum transfer associated with the excitation of density waves within Saturn’s
rings leads to characteristic orbital evolution time-scales of Saturn’s A ring and inner
moons which are much shorter than the age of the solar system.

The theory of spiral waves in Saturn’s rings is reviewed briefly in §2. §3 discusses
the observations and the ring properties derived therefrom. The short timescale of
ring evolution predicted by density wave torques and other outstanding questions are
discussed in §4. Conclusions are summarized in §5.

2 Theory

Spiral density waves are horizontal density oscillations which result from the bunching
of streamlines of particles on eccentric orbits (Figure 2). Spiral bending waves, in
contrast, are vertical corrugations of the ring plane resulting from the inclinations of
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Figure 2. Schematic of particle streamlines within a resonantly excited two-
armed spiral density wave. Density waves observed in Saturn’s rings are much
more tightly wound. (From Lissauer & Cuzzi 1985)

Figure 3. Schematic of a spiral bending wave showing variation of vertical
displacement with angle and radius for a two-armed spiral. Bending waves
observed in Saturn’s rings are much more tightly wound. (From SCL)

particle orbits (Figure 3). In Saturn’s rings, both types of spiral waves are excited at
resonances with Saturn’s moons, and propagate due to the collective self-gravity of the
particles within the ring disc.

Ring particles move along paths which are very nearly Keplerian ellipses with one
focus at the centre of Saturn. However, small perturbations due to the wave force a
coherent relationship between particle eccentricities (in the case of density waves) or
inclinations (in the case of bending waves) that produces the observed spiral pattern.
The theory of excitation and propagation of linear spiral waves within planetary rings
has been reviewed by Shu (1984). An abbreviated summary of aspects of the waves
which may be observed and analyzed to determine ring properties is presented below.
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2.1 ORBITS AND RESONANCES

Saturn’s oblateness produces a gravitational potential different from that of a point
mass. Near Saturn’s equatorial plane, at an arbitrary distance, r, from the centre of
the planet, the vertical frequency of a test particle, u(r), exceeds its angular frequency,
Q(r), which in turn exceeds the radial (epicyclic) frequency, x(r). Thus the nodes of a
particle’s orbit regress and the line of apsides advances (e.g. Burns 1976).

Resonances occur where the epicyclic (or vertical) frequency of the ring particles
is equal to the frequency of a component of a satellite’s horizontal (vertical) forcing,
as sensed in the rotating frame of the particle. We can view the situation as the
resonating particle always being at the same phase in its radial (vertical) oscillation
when it experiences a particular phase of the satellite’s forcing. This situation enables
continued coherent “kicks” from the satellite to build up the particle’s radial (vertical)
motion, and significant forced oscillations may thus result.

The locations and strengths of resonances with any given moon can be determined
by decomposing the gravitational potential of the moon into Fourier components [see
Shu (1984) for details]. The disturbance frequency, w, can be written as the sum of
integer multiples of the satellite’s angular, vertical and radial frequencies:

w = mily + npm + prM, (1)

where the azimuthal symmetry number, m, is a non-negative integer, and n and p are
integers, with n being even for horizontal forcing and odd for vertical forcing. The
subscript M refers to the moon. Horizontal forcing, which can excite density waves and
open gaps by angular momentum transport, occurs at inner Lindblad resonances, ri,
where

k(ry) = mQ(ry) — w. (2)
Vertical forcing occurs at inner vertical resonances, rv, where
u(rv) = mry) — w. 3)

When m # 1, the approximation p & {} &~ £ may be used to obtain

Qrov) m+n+p
QM - m—1 ) (4)

The (m+n+p)/(m—1) or (m+n+p): (m—1) notation is commonly used to identify
a given resonance.

Lindblad resonances with m = 1 depend on apsidal precession due to the difference
between (r) and «(r) and are referred to as apsidal resonances. Vertical resonances
with m = 1 depend on the regression of the nodes of the ring particles upon the ring
plane caused by the difference between Q(r) and u(r) and are called nodal resonances.

The strength of the forcing by the satellite depends, to lowest order, on the satellite’s
eccentricity, e, and inclination, 4, as e/(sins)". The strongest horizontal resonances
have n = p = 0, and are of the form m : (m — 1). The strongest vertical resonances
have n = 1, p =0, and are of the form (m + 1) : (m — 1). The locations and strengths
of such orbital resonances are easily calculated from known satellite masses and orbital
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Figure 4. Locations and strengths of major Lindblad resonances in Saturn’s A ring for Saturn’s
five closest “ring moons”, Janus (1980S1), Epimetheus (1980S3), Pandora (1980526), Prometheus
(1980527) and Atlas (1980528). The closer moons have more closely spaced resonances with strength
increasing outward more rapidly. (From Lissauer & Cuzzi 1982)

parameters and the gravitational moments of Saturn (Lissauer & Cuzzi 1982, SCL). By
far the lion’s share of the strong resonances lie within the outer A Ring (Figure 4).

2.2 BENDING WAVES

The vertical component of the gravitational force exerted by a satellite on an orbit
inclined with respect to the plane of the rings excites motion of the ring particles in
a direction perpendicular to the ring plane. The vertical excursions of the particles
are generally quite small (Burns et al. 1979). However, at vertical resonances in Sat-
urn’s rings, the natural vertical oscillation frequency of a particle, u(r), is equal to the
frequency at which the vertical force due to one Fourier component of the satellite’s
gravitational potential is applied. Such coherent vertical perturbations can produce
significant out-of-plane motions (Cook 1976). Self-gravity of the ring disc supplies a
restoring force that enables bending waves to propagate away from resonance creating a
corrugated spiral pattern. For m > 1, bending waves propagate toward Saturn (SCL);
nodal bending waves (m = 1) propagate away from the planet (Rosen & Lissauer 1988).

In the inviscid linear theory, where viscous damping is ignored and the slope of
the bent ring mid-plane is assumed to be small, the height of the local ring mid-plane
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relative to the Laplace (invariant) plane (Figure 5) is given by

e
Z(r) = IATvlﬁ (e'(o"'*ﬂe"’ez/ e"“"’zdn) (5)
T —o0

where
vl =F\ [ zoipr (6)
£ =alrv -1 oo, ™
D[ - (e, -0 ®

r is the distance from Saturn, ry is the location of the vertical resonance and 0, = w/m
is the angular frequency of the reference frame in which the wave pattern remains fixed
(Gresh et al. 1986). The number of spiral arms in the wave is equal to the azimuthal
symmetry number of the resonance, m. The surface mass density of the ring material
is denoted by ¢ and G is the gravitational constant. The forcing strength, F, and the
phase of the wave, ®v, depend on the satellite in a manner given by equations (45-47)
of SCL for m > 1 and equations (11-13) of Rosen & Lissauer (1988) for m = 1. The
operator R signifies the real part of the quantity. The sign of D is given by ¢, which
is equal to +1 for inner vertical resonances, at which all observed bending waves are
excited.

The oscillations of bending waves are governed by the Fresnel integral in equa-
tion (5). In the asymptotic far-field approximation, the oscillations remote from reso-
nance have a wavelength

472Go

g e ) @

Equation (9) can be simplified by approximating the orbits of the ring particles
as Keplerian, p(r) = (GMs/r®)/? = Q(r), for the m > 1 case and approximating
the departure from Keplerian behaviour to be due to the quadrupole term of Saturn’s
gravitational potential, 3.7 %g-GMs, Jz2 = 0.0163, for the m = 1 case. (The symbols Ms
and Rs refer to the mass and equatorial radius of Saturn, respectively.) The resulting
formulae are (Rosen 1989)

A(r) ~3.08 (1%)4 m‘i - rvl_ - (m>1) (10a)
A(r) 54.1 (%)sa rvl_ - (m=1)  (10b)

where ), r and ry are measured in kilometers, and ¢ is in g cm™2 . Equations (10)
afford a means of deducing the surface density from measured wavelengths.

Inelastic collisions between ring particles act to damp bending waves. A rigorous
kinetic theory of the damping of bending waves has not yet been developed. SCL used
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Figure 5. Theoretical height profile of an undamped linear spiral bending wave as a function of
distance from resonance. The length and height scales are in arbitrary units. The solid and dashed
lines represent two profiles of the same wave plotted at different azimuths. (Adapted from SCL)

a fluid approximation and the assumption that damping is weak to derive an amplitude
variation of in terms of the viscosity of the ring material, ». The collisional model of
Goldreich & Tremaine (1978a) can be used to calculate the local scale height, H, of the

ring from the measured viscosity:
/21/ (1+72)
H=¢——= 11
Q T (11)

where 7 is the optical depth of the ring.

2.3 DENSITY WAVES

The gravity of a moon on an arbitrary orbit about Saturn has a component which pro-
duces epicyclic (radial and azimuthal) motions of ring particles. However, as in the case
of vertical excursions induced by moons on inclined orbits, the epicyclic excursions are
generally extremely small. An exception occurs near Lindblad (horizontal) resonances
(equation 2), where coherent perturbations are able to excite significant epicyclic mo-
tions. In a manner analogous to the situation at vertical resonances, self-gravity of the
ring disc supplies a restoring force that enables density waves to propagate away from
Lindblad resonance (Goldreich & Tremaine 1978a). All density waves identified within
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Saturn’s rings are excited at Inner Lindblad Resonances, and propagate outward, away
from the planet. '

The theory of spiral density waves is analogous to that of spiral bending waves,
with the fractional perturbation in surface mass density, Ao /o, replacing the slope of

the disc, dZ/dr. The relationship in the linear theory (Ao /o <« 1) which is analogous
to equation (5) is (Rosen 1989)

. éo . .
£ _ R{AL [l + 606—063/2/ 0 e.n2/2dn:| e-.mao} (12)
a -0
where i denotes /—1 and the amplitude is given by
=M
= 13
AL 27FGTL ( )

The forcing function, w4y, is given for various cases by Shu (1984) and Rosen (1989).
The phase of the wave is given by

¢y, = arg(AL) + _7_2r_ — mbo (14)
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Far from resonance, equation (12) predicts a spacing between wave crests given by

47Go

A=, — e = w0

(15)

Equations (10), with Ry and ry replaced by Ry and r, are.valid for density waves
under the same approximations as for bending waves. The theory of damping of linear
density waves is given by Goldreich & Tremaine (1978a).

Most density waves observed in Saturn’s rings have Ao/o ~ 1. At such large
amplitudes the linear theory breaks down. The theory of non-linear density waves has
been developed by Shu et al. (1985a, b) and Borderies et al. (1986). The principal
results of the non-linear theory are as follows: non-linear density waves depart from
the smooth sinusoidal pattern predicted by equation (12), and become highly peaked
(Figure 6). The theoretical wave profiles have broad, shallow troughs with surface
density never dropping below half of the ambient value, and are qualitatively similar to
observed waves (compare Figures 6 and 10). (A more detailed correspondence may be
achieved if the background surface density is assumed to vary within the wave region,
Longaretti & Borderies 1986.) Shocks do not occur, i.e. neighbouring streamlines never
cross, even though they become arbitrarily close at wave crests as the wave propagates
outward if viscous damping is not included (Shu et al. 1985a). The non-linear torques
exerted by Saturn’s moons are similar to those calculated using linear theory (Shu et
al. 1985b).

3 Observations

Spiral waves in planetary rings are extremely tightly wound, with typical winding angles
being 10~* to 1073 degrees. Such waves have very short wavelengths, of order 10 km.
Earth-based photographs and Pioneer spacecraft images have resolution inadequate to
detect such small scale features, so all available observations of spiral waves in planetary
rings are from the Voyager spacecraft. Stellar occultations by Saturn’s rings visible from
Earth and HST may provide additional data during the next few years.

Spiral waves in Saturn’s rings were detected by four instruments on the Voyager
spacecraft. Voyager images have been used to detect density waves due to brightness
contrasts between crests and troughs both in reflected light on the sunlit face of the
rings (Figure 7; Dones 1987) and in diffuse transmission of sunlight to the dark side
of the ring plane (Cuzzi et al. 1981). Bending waves are visible on Voyager images of
the lit face of the rings (Figure 7) due to the dependence of brightness on local solar
elevation angle (SCL). Bending waves appear on images of the unlit face of the rings
due to the dependence of the slant optical depth, through which sunlight diffused, on
local ring slope (Lissauer 1985).

Both density waves and bending waves were detected in the data received when
the Voyager radio signal was attenuated by the occulting rings on its way to Earth
(Figure 8; Marouf et al. 1986, Gresh et al. 1986). Density waves are observable by
occultation experiments because bunching of particle streamlines increases the optical
depth, 7, of crests; bending waves, although they leave optical depth normal to the ring
plane unchanged, can be detected because the tilt of the ring plane causes oscillations
in the observed slant optical depth (Figure 9). Similarly, the Voyager Photopolarimeter
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Figure 7. Voyager 2 image (FDS 43999.19) of a portion of the lit face of Saturn’s A ring showing two
prominent wave patterns. The feature on the left is the Mimas 5:3 bending wave; its contrast is high
because the tilt of the local ring plane due to the wave was comparable to the solar elevation angle
(~ 8°) when the image was taken. The Mimas 5:3 density wave is seen on the right. The separation
between the locations of the two waves is due to the non-closure of orbits caused by Saturn’s oblateness.
The other linear features in the images are unresolved density waves excited by the moons Pandora
and Prometheus. Saturn is off to the left.
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Figure 8. Examples of wave features observed in the radio occultation data of Saturn’s A ring. The
solid curved is measured normal optical depth, 7, plotted to increase downward. The gray shaded
region represents the 70% confidence bounds on the measurement. {(From Rosen 1989)
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Figure 9. Schematic of a radio occultation of spiral waves. (From Rosen 1989)

(PPS) and Ultraviolet Spectrometer observed the diminution of light as a star passed
behind the rings, thereby detecting changes in the slant optical depth of the rings caused
by spiral waves (Lane et al. 1982, Holberg et al. 1982; Figure 10).

Five bending waves and several dozen density waves in Saturn’s rings have thus far
been identified with exciting resonances and analyzed to determine the local surface
mass density of the rings. Results of the first analyses are tabulated by Esposito et
al. (1984). More recent studies have been performed by Cuzzi et al. (1984), Lissauer
(1985), Gresh et al. (1986), Longaretti & Borderies (1986), Rosen & Lissauer (1988)
and Rosen (1989). The surface density, o, at most wave locations in the optically thick
A and B rings is of order 50 g cm™%. Measured values in the optically thin C ring are
o &~ 1 g cm™?; an intermediate value of 10 g cm™? has been estimated for Cassini’s
Division.

The damping behaviour of three bending waves have also been analyzed to place
upper bounds on the viscosity and local thickness of the rings (Lissauer et al. 1984,
Esposito et al. 1983, Gresh et al. 1986, Rosen & Lissauer 1988). The A ring appears
to have a local thickness of a few tens of meters; the thickness of the C ring is < 5 m.
Viscosity measurements from the damping of density waves are less reliable (Lissauer
et al. 1984, Shu et al. 1985b).
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The outer edges of the B and A rings are maintained by the Mimas 2:1 and Janus 7:6
resonances, which are the strongest resonances within the ring system (Smith et al. 1981,
Holberg et al. 1982, Porco et al. 1984a, Lissauer & Cuzzi 1982, Borderies et al. 1982).
Nearly empty gaps with embedded optically thick ringlets have been observed at strong
resonances located in optically thin regions of the rings (Holberg et al. 1982). These
features are probably caused by a resonance-related process; however, no explanation
for the embedded ringlets currently exists. Nearly empty gaps with embedded ringlets
have also been observed at non-resonant locations (Porco et al. 1984b).

4 Unresolved issues

Although spiral waves in Saturn’s rings are well understood by astrophysical standards,
there remain several major outstanding issues. These problems will be summarized in
this section in a sequence beginning with those of an observational nature and ending
with theoretical questions concerning angular momentum transport and the age of
Saturn’s rings. The latter issues are probably more relevant to the understanding of
spiral waves in other disc systems.

The first mystery about density waves is why they are seen at all in Voyager images
(Dones 1987). The optical depths of the A and B rings are sufficiently large and the solar
elevation angles at the Voyager 1 and 2 encounters so low (4° and 8°, respectively) that
very little sunlight could diffuse through the rings. This means that the brightness of the
lit face of the rings should not be very sensitive to ring optical depth, as very little light
would be able to diffuse down to the “extra” material near the unlit face, be reflected,
and then diffuse back out to reach the Voyager cameras. The brightness contrast
predicted by the wave amplitudes directly observed via stellar and radio occultations
(which are generally similar to the theoretical amplitudes) is far less than the contrast
observed in the images. All density waves imaged on the lit face of the rings are non-
linear. The strong particle perturbations in such regions cause high-velocity collisions
that can produce a physical thickening of the rings at density wave crests. The “top
surface” of the ring plane could therefore vary in elevation, and local slopes could



