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Statistics and genetic toxicology —
setting the scene

D.P. LOVELL

1.1 INTRODUCTION

The aim of this chapter is to explain in non-mathematical terms the
strengths and limitations of aspects of the statistical analyses that can be
applied to genotoxicity studies. First, to improve the understanding of
subsequent chapters and statistical ideas in general; second, to try to
remove the mystique surrounding aspects of statistics and thereby improve
the dialogue between the individuals involved in conducting and assessing
genetic toxicology tests.

There is a certain irony in the need for a book of this type at all. Much of
current statistical thought developed from the work of researchers
interested in the field of genetics. In particular, Sir Ronald Fisher made an
enormous contribution to the field of what can now be termed biometrics.
Many of the statistical techniques now in common use trace back to
Fisher’s studies on genetic variation and mutation in a range of species. In
fact, one of Fisher’s major contributions, the development of the analysis of
variance, resulted from his unification in 1918 of the previously indepen-
dent ideas and warring factions of Mendelian Geneticists and Biometri-
cians (Fisher, 1918).

Fisher was, at the the same time, a geneticist, mathematician, statistician
and experimentalist. Such expertise in the same person is rare. In genetic
toxicology there is now a division of labour with specialists from different
disciplines collaborating. This increased specialism has to some extent
broken the statistical links with pioneers in the field.

1.2 WHAT IS STATISTICS FOR?
There are different schools of thought on whether statistical
methods should be aimed at testing hypotheses (is the response of the
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treated group greater than that in the control group?) or estimation (how
big is the difference and how confident are we of the difference?).
Increasingly, the importance of estimation is being recognised and
biomedical statisticians are insisting that statistical practices should reflect
this (Gardner & Altman, 1986; Bulpitt, 1987).

An alternative approach is to use statistical methods for exploring and
summarising the data. The move away from formal hypothesis testing and
significance levels has developed over the last few years following on from
the work of John Tukey (1977) in the area called Exploratory Data
Analysis. Chatfield (1985) has suggested another somewhat similar
pragmatic approach to data analysis called Introductory Data Analysis
(IDA).

The increasing use of statistics as a method to explore data sets and to
provide an improved summary of the results of an experiment whether by
significance tests or exploratory data analysis is more relevant to how
genotoxicity assays are actually assessed. The judicious use of statistics as
an aid to determining the implications of results from genotoxicity assays is
more important than an over-reliance on hypothesis testing methodology.

At times, discussions of statistical philosophy may confirm some
biologists’ prejudices about how statistics is irrelevant to the work they are
doing. It is easy for the non-statistician to become confused and dispirited
at the apparent intricacy of statistics and to dismiss its terminology and
formality. However, statistics is a complex intellectual activity with roots in
mathematics, logic and philosophy as well as the more mundane practice of
data processing.

Statistical formulae therefore use mathematical symbols as a concise and
precise method of specifying complex ideas. An example which is widely
used in other chapters is the symbol Y, (the Greek capital letter sigma) to
designate the sum of a set of values.

n
The full symbol Y X;is a succinct way of saying add all n values of a
i=1

set of numbers designated X, X,, . . ., X},. In fact, few of the practical
statistical methods described in this book require mathematical skills
beyond addition, subtraction, division and multiplication. Most methods
are now either programmable for a computer or already exist as programs
in software packages (see Appendix 2).

1.3 IS THERE A CORRECT STATISTICAL ANALYSIS?
Non-statisticians may well demand the ‘best’ approach or the
‘most suitable’ test. They become confused by the apparent competing
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claims for different approaches or the seemingly academic disputes over the
various methods. Such a response is understandable. Concepts in statistics
are still controversial issues raising fundamental questions. There is no
single correct statistical method, but, instead, there are different schools of
thought with alternative approaches.

An example of the continuing debate is how to analyse a 2 x 2 table such
as the comparison between the proportion responding in control and
treated groups —a common design in genetic toxicology. It is over 50 years
since Frank Yates first described an analysis for this problem and yet the
approach is still contentious. In 1984, on the fiftieth anniversary of Yates’
original paper, the Royal Statistical Society held a meeting to commemor-
ate its publication (Yates, 1984). Yates’ lecture and the ensuing comments
and correspondence takes up nearly 40 pages of the Royal Statistical
Society’s Journal!

There are certainly correct analyses of the various experimental designs
used but there is probably no single correct analysis. In the case of the
assays discussed in this book, it is possible to suggest statistical methods
that work, i.¢. give sensible answers. When more than one test gives sensible
answers it may be difficult to decide which, if any, is ‘correct’. Alternative
analyses may well exist and the use of these methods should not necessarily
be discouraged. One good reason is that often little is known of the
comparative performance of different statistical tests on real data.

Another reason for not choosing a single ‘correct’ analysis is that many
of the apparently different approaches are often the same statistical analysis
in another guise. For instance, the tables of x2, ¢, F and the normal deviate
(2) (see list of abbreviations for a description of these terms) found in the
back of most introductory statistical text books are interrelated. All the
other tables can, in fact, be shown to be special cases of the general Ftable.
It is important, therefore, not to select one method and reject another
simply because its terminology or formulation is different. For example, x2
tests on proportions can be expressed as tests based upon the normal
deviate (z) while the two sample ¢-test is equivalent to a one-way analysis of
variance with two groups.

Many statistical ideas can be related to an underlying general statistical
model. An analogy is a continent covered by water with just the mountain
tops appearing above the water as islands. Statistical tests like the chi-
square and the analysis of variance which may appear independent are in
fact inter-connected. The unification of statistical methods and modelsis an
area of considerable intellectual effort which is now meeting with some
success (McCullough & Nelder, 1983).

Statistical methods which are recommended in this book should not be
taken to be ‘the method’ to the exclusion of all other approaches. The
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methods included in this book may even be idiosynchratic or special cases
of a more relevant general technique chosen because of familiarity with a
particular approach. Computers and statistical packages are becoming
more powerful and more widely accessible so that new statistical methods
which will be more appropriate could replace today’s optimum approaches.

It is appropriate to warn, however, that even with computers incorrect
analyses can be carried out. There is no limit to people’s ingenuity in the
misuse of statistical packages. It is not possible to warn against all such
types of errors in detail. However, some of the incorrect approaches based
upon misunderstandings about statistical ideas are included in the
discussion on each genotoxicity assay. The main way to guard against the
use of incorrect methods is to maintain a familiarity with the data being
analysed and by a healthy scepticism of computer printouts!

The aim of the individual chapters is to provide the statistical methods
necessary for the genetic toxicologist to analyse the results of assays. Most
of the methods are in fact straightforward and relatively easy to apply but
difficulties may arise. If so, stop, and consult a statistician. The explana-
tions in the chapters should provide sufficient information for a dialogue to
take place between the genetic toxicologist and the statistician.

1.4 EXPERIMENTAL DESIGN

The experimental designs used in genotoxicity testing are not very
different from those used in other areas of toxicology. The organisms may
differ — bacteria, mice or mammalian cells; the end-points may vary — point
mutations, chromosomal abberrations or abnormal foetuses — but the
underlying experimental concepts are similar. A standard assay usually
includes a negative control and a treated or experimental group as well as
the inclusion of a positive control (where a treatment known to produce an
effect is administered). There may also be a dose-response experiment to
investigate the relationship of the end-point to variation in the doses. The
experimental designs developed for genotoxicity assays do not differ
appreciably from those developed by Finney and co-workers in the 1950s
and 1960s for biological assays in general (Finney, 1978). Certainly, some
of the statistical methods used in biological assay could be applied to the
analysis of data from mutation experiments.

Statistical methods have been developed to try to detect effects of
treatments above the ‘noise’ of biological variability. Variation can be
present at any of a number of levels depending upon the mutagenicity
assay; for instance, between cells, between plates or cultures, between
animals, and between observers. Experimental designs are methods for
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taking this variation into account, estimating it and minimising its effect on
the factors or the treatments which are the main purpose of the study.
Choosing sample sizes, types of samples, doses, all form part of determining
the experimental design. The presence or absence of variability at different
levels of the design can influence how acceptable it is to pool data from
different units such as plates or animals. The choice of the experimental unit
in the analysis is important because variation between cultures in a
chromosome aberration study or between males in a dominant lethal study
may affect the significance testing of hypotheses.

In many of the more sophisticated statistical analyses the experimental
design is a fundamental aspect of the analysis determining both the nature
and the power of the statistical tests to be used. Identification and
incorporation of potential sources of variation into the experimental design
as a constituent part of the study can subsequently provide considerable
insight into how successfully the objectives of the experiment were
achieved.

1.5 STATISTICAL ISSUES RELEVANT TO ALL
MUTAGENICITY ASSAYS
Some of the experimental designs permit a number of possible
methods for analysis. Examples of the range of methods actually in use will
be found in the subsequent chapters; however, a number of statistical issues
(Table 1.1) need to be discussed which are relevant to an appreciation of
statistical methods in general.

1.5.1 Probability and hypothesis testing

Probability is a very practical concept understandable to any
gambler, whilst at the same time being a deeply philosophical statistical
concept. An understanding of how often events occur in the ‘long run’ is a
sufficient start for the interpretation of statistical tests. Some events are
common although their actual occurrence at a particular point is uncertain;
others are rare. Probability is measured on a scale from 0 to 1 where 0 means
an event will never happen and 1 means that it is certain to.

One aspect of a statistical analysis is to provide some indication of
whether the results obtained were compatible with some hypothesised
effect. In fact a hypothesis, called the null hypothesis, is set up that suggests,
for instance, that a particular treatment has no effect. The null hypothesis is
deliberately created to be challenged and possibly rejected in favour of an
alternative hypothesis that the treatment does have some effect. (Underly-
ing this somewhat artificial formulation of the purpose of an experiment is
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Table 1.1. Statistical issues of relevance to all mutagenicity assays

1.5.1  Probability and hypothesis resting
Null hypothesis, alternative hypothesis, test statistics (F, ¢, 2, z),
critical values, significance levels. Statistical significance is not
a measure of the size of an effect.

1.5.2  One- or two-sided significance tests
One- or two-sided test, one- or two-tailed statistical distributions,
statistical tables of distributions.

1.5.3  The power of a statistical test
Neyman-Pearson theory of hypothesis testing, false positives, false
negatives. Prediction, sensitivity, specificity, accuracy, prevalence,
Type I (a) error, Type II (B) error, power (1 —B).

1.5.4  Biological and statistical significance
Hypothesis testing, estimation, exploration of data. Statistical tests on
positive controls. ‘Statistical sanctification’, high dose effects,
thresholds, monotonic dose-response, statistical significance and/or
biological importance, correlation.

1.5.5 What to do with borderline significance levels
Weak effects or Type I errors, repetition of borderline experiments,
pooling results, combination of probability values, sample size and
power.

1.5.6  Replication and randomisation
Replication of and randomisation of experimental units.

1.5.7  Distribution of data
Parametric tests, normal distributions, ‘robustness’.

1.5.8  Transformations
Counts, Poisson, square root transformation; proportions, binomial,
arcsine or angular transformation; logarithmic transformation, scales,
back-transformation.

1.5.9  Parametric v non-parametric tests
Parametric methods: Analysis of variance, r-test, linear regression,
assume normal distributions, equal variances, independent data.
Non-parametric methods, distribution free tests, relative rankings.

1.5.10  Qutliers
Artefacts, blunders, technical errors.

1.5.11  Testing comparisons between means
Planned, a priori; unplanned, a posteriori; multiple comparisons,
orthogonal comparisons. Dunnett’s test, Bonferroni correction.

the concept that while a hypothesis can be disproved it can never be
proved.)

The decision whether or not to reject a null hypothesis is based upon
comparing the test statistic (e.g. F, ¢, x2, etc.) obtained from the statistical
test with tables of critical values for that particular test. The critical values
are those associated with particular significance levels.

These significance levels provide a probabilistic statement that the results
observed occurred by chance alone when the null hypothesis is true. For
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historical reasons based upon the availability of suitable tables a number of
critical values have become common. These are based upon probabilities of
a by-chance-alone effect of one in 20, one in 100 or one in a 1000
experiments. These are sometimes expressed as percentages or as probabili-
ties. Various ways of representing these effects are shown in Table 1.2.

There is no compulsion to be restricted to these critical values and
increasingly statistical software packages are printing the actual prob-
ability levels associated with the statistical test. Many statisticians prefer to
report these values arguing that is is misleading to draw arbitrary lines such
that a probability level of 0.051 is non-significant while a level of 0.049 is
significant.

It is important to appreciate that the significance level is not an absolute
measure of the size of the difference between, say, two group means. Itis a
function of the experimental design and the statistical tests used.

Rare events which have small but finite probabilities do occur. Therefore
an extremely small probability may represent a real effect of a treatment but
it might also mean that this is a rare chance effect. This is an important
consideration when many comparisons are being made. If, for instance, all
the possible comparisons between 100 means are carried out, there would
be 4950 comparisons. If many comparisons are made, or many experiments
are carried out, rare chance effects will eventually be detected. In fact, the
choice of specific significance levels actually defines the number of events
that occur by chance. The problem of multiple comparisons will be
discussed in more detail below.

1.5.2  One- or two-sided significance tests

The non-statistician is often confused by the problem of whether a
particular statistical method involves a one- or two-sided significance test.
The agonies of choosing which test can be avoided if certain key ideas are
thought through. The core of a statistical test is the Null Hypothesis that a
treatment has no effect. At the same time an alternative hypothesis is also
proposed. This can either be that the experimenter is interested in a
difference between the control and the treated (the difference can be in
either direction and the statistical test is then two-sided) or that the
experimenter is only interested in treatments which alter the incidence in
one direction by increasing, for instance, the incidence of chromosomal
aberrations (in this case the test is one-sided).

The actual choice of critical values for determining significance levels for
testing the null hypothesis is determined from statistical tables and needs
some care as the tables appear in many forms. The one-sided test is a less
conservative test than the two-sided in that smaller effects will be
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considered to be significant. A one-sided test is therefore appropriate when
the direction of the effect is of interest: the treatment may or may not
increase the damage or number of mutations compared with the control
and whether or not it reduces the incidence below the control level is not of
concern. (It is, however, important to check that incidences are not reduced
in treated groups as such a finding might indicate problems with the
experimental procedures such as high dose toxicity. This is an example of
using statistics for exploring patterns in the data rather than for formal and
precise significance testing.)

In general, one-sided statistical tests should be used in genotoxicity
assays. (Conceivably, in a research project, an unknown compound might
be either a mutagen or an anti-mutagen protecting against genetic damage,
and experiments designed to determine which.) Care is needed to ensure
that the correct sided test is in fact carried out especially when using
statistical packages. Some tests such as the analysis of variance and testing
for linear trends are routinely reported by many statistical packages as two-
sided tests. Such tests will underestimate the statistical significance of any
treatment related effects.

A further complication is that it is not always apparent from a statistical
table whether the associated probability levels are for one- or two-sided
tests. For instance, the table of critical values for the ¢ distributions given by
Snedecor & Cochran (1967, Table A4) are for two-sided tests while those
given by Winer (1971, Table C2) are for a one-sided test. Also, tables such as
those of the Fand x? distributions give the probabilities associated with one
tail of the distribution but which are appropriate for a two-sided test. Figure
1.1 shows the appropriate tails of the distribution to use for either a one- or
two-sided test. Mather (1964, Section 18, p. 46) provides a more technical
but helpful description of the relationship between the various
distributions.

The symbol y? can be confusing because it seems to appear in two forms:
either the Greek letter chi (x) or the Roman X. This is because the Greek and
Roman letters are used in general to distinguish between a theoretical value
and an observed value. The theoretical chi-square distribution is denoted by
x? while the calculated chi-square statistic is referred to as X2. A similar
distinction is made between the theoretical mean and standard deviation of
a population called u and ¢ (Greek letters mu and sigma) and the observed
values obtained in an experiment designated X and s.

1.5.3  The power of a statistical test
The formulation of a statistical analysis in the form of a test of a
hypothesis (called the Neyman-Pearson Theory of hypothesis testing after
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Fig. 1.1. Frequency curves of z, ¢, xz and F distributions showing the respective tails of the
distributions used for taking critical values for two- and one-sided tests at the

P{0.05 criterion.
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