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1

Suffix notation and tensor
algebra

1.1 Summation convention

We consider a rectangular cartesian coordinate system with unit
vectors i, j and k along the three coordinate axes x, y and z
respectively. For convenience, we relabel these unit vectors e,, e, and
e; and denote the coordinate axes by x;, x, and x; (Figure 1.1). A
typical vector a with components a;, a, and a; in cartesian
coordinates can then be written as

a=Y age, (L1

Instead of writing the summation sign in (1.1) every time we have an
expression of this kind, we can adopt the summation convention:
whenever an index occurs precisely twice in a term, it is understood
that the index is to be summed over its full range of possible values
without the need for explicitly writing the summation sign Y. Hence
(1.1), with this convention, is

a: aiei) (1.2)

where summation over i is implied (i =1, 2, 3). Since the components
a; of a are given by the dot-product of a with each of the unit vectors
e, thenag;,=a.e; (i =1, 2, 3) and (1.2) can be written

a=(a.e)e;, (1.3)

again adopting the summation convention.
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2 Suffix notation and tensor algebra

Example 1 If vectors ¢ and d have components ¢; and d; (i=1, 2, 3)
respectively, then

c.d= Z Cidizcidi. - (14)

Example 2

2
z A X, =a X1+ ax, = a;x;. M (1.5)
s=1

Example 3 Consider the term a;b,b; in which i and j both occur twice.
The summation convention implies summation over i and j
independently. Hence, if i and j run from 1 to 2,

a;b;b;j=a,1b:b,+apbib,+aybb, +ayb,b, (1.6)
=ay, bl +apbi+biby(ap+ay). -4 (1.7
The usual rules apply when the summation convention is being used,
that is,
a;b; = b,a, (1.8)
and
ai(b, + ¢;) = a,b; + a,c,. (1.9)

We see in (1.9) that although i occurs three times in the left-hand side
it only occurs twice in each ferm and therefore summation over i is
implied. Also

(a:b;)(c;d;) = (aic;)(bid;), (1.10)

Figure 1.1

€3

€;

€;
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1.2 Free and dummy indices 3

that is, the order of the factors is unimportant and summation is
implied over both i and j. It would be wrong, however, to write (1.10)
as a;b,c;d; since the index occurs four times and therefore no
summation over i would be implied.

Example 4

2 2
(Z asxx) = (a,x, + ayx,)° (1.11)
s=1
=a’x?+ 2a,a,x,x, + asxs. (1.12)
Using the summation convention we can write this as
2 2
<2 am)(E a,x,-) =a;X;4;X;, (1.13)
i=1 j=1

where both i and j appear twice and consequently are both summed
over the values 1 and 2.

1.2 Free and dummy indices

Consider the following set of n linear equations for the quantities
Xy, X, ..., %, with (constant) coefficients ayy, ary, ..., dy,,

Aopy « + + 5 Gpp-
a1 xXq +alzx2+ e +al,,x,, =C,

Ay X1t apx,+. ..+ a,x, =cC,,

(1.14)
aux1tax,+...+a,,x,=c¢,,
where ¢4, ¢5, . . ., ¢, are given constants. This set of equations can be
written as
n N\
2 a;x; = ¢y,
j=t
n
E arX; = Cp,
j=1 > (1.15)
n
E ApiX; = C,.
=1 J

By introducing the index i, (1.15) can be expressed in the more
compact form

Z ainj = C,‘, (l = 1; 2; c e ey n) (1'16)
j=1
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4 Suffix notation and tensor algebra

Using the summation convention, we can write (1.16) as
a,‘jx]' = C;. (117)

Indices which occur twice, so that summation over them is implied (;j
in (1.17)), are called dummy indices, while indices which can have any
value (i in (1.17)) are called free indices. We note that (1.17) could
equally have been written as a,,x, =c,, where summation over the
dummy index ¢ is implied and p is free.

Example 5 Suppose we are given constants a; (i, j =1, 2, 3) and the
function ¢ =a;x;x; (where summation over both i and j is implied).
We wish to calculate the quantities d¢/3x,, where s is a free index
(equal to 1, 2 or 3). Then by the chain rule for differentiation

o¢ Bx; ox;

— =g, —x; +ax,—.

ox, Tox,ot YT on,
Since the x; are independent variables, 3x;/9x, is 1 if i =s and zero
otherwise. Hence in the first term the i-summation has only one
non-zero term (when i =s). Similarly the j-summation in the second
term has only one non-zero term (when j =s). Thus

¢/ 0x, = ayx; + a,x;, (1.19)

]

(1.18)

where j is summed in the first term and i in the second. These dummy
indices can be given any letter we choose so that, replacing the dummy
index j by i in the first term of (1.19),

a
8_¢ =agx; +ax; = (ag + a;)x;, (1.20)
Xs

where i is now the dummy index and s is the free index. If a, is
symmetric so that a;, = a,; then

3¢ /x, =2a;x;, (1.21)
whereas if a;, is skew- (or anti-) symmetric so that a,, = —a,; then
¢=0 and 0J¢/ox,=0. - (1.22)

1.3 Special symbols

1. Kronecker delta
The Kronecker delta symbol §, is defined by

1 if i=j
6i'= i . ={ . ’ 1
ITGG T 0 it i) (1.23)
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We note that J,e; = §,;e, + 5,,e, + J,5e; and that only one of these
three terms is non-zero depending on i; for example §;,=1,
612 =013=0. Hence 6,e; =e;. Also, as in (1.3),

a={(a.e)e;=(a.e;0;)(e ). (1.24)
Consider the quantity é,6;. Then
8,8 = (e; . €;)(e; . &) (1.25)
=(e;,.e (e, .e) + (e .e)(e,.e)
+ (e; . e3)(es. €;). (1.26)

Now if i # k, then at most one of the two brackets in each term can be
non-zero and hence each term is zero. If i = k then one term has both
brackets non-zero and equal to 1. Hence 3,0, is zero if i # k and is 1
if i = k. This is just the definition of §; (see (1.23)) and so

6,]6,k = 6ik‘ (127)

Further consider the expression 6,,4,,, where r, p and gq are free
indices. Then

6, A 0,1 4,41+ 824,50+ 0,54 (1.28)

pas pa3-

Only one of these terms is non-zero depending on the value of r. Hence

05 Apgs = Apgr (1.29)

2. The alternating symbol

The alternating symbol €, is defined as
€ =¢€; . (€ X ey). (1.30)

Hence if i, j and k are all different, then e; X e, = t+e,, the plus sign
being taken if i, j, kK form a cyclic permutation of 1, 2, 3 (1, 2, 3 or 3,
1, 2 or 2, 3, 1) and the minus sign if they form an anticyclic
permutation (3, 2, 1 or 2, 1, 3 or 1, 3, 2). Hence, from (1.30),
€ = +11if i, j, k are all different and cyclic, and €, = —1if i, j, k are
all different and anticyclic. If j =k, then the cross-product is zero in
(1.30) and consequently so is €. If either j or k equals i then e; X e, is
at right-angles to e; and €, will again be zero. We have finally

+1 if i, j, k are a cyclic permutation of 1,2, 3,
€;x =3 —1 if i, j, k are an anticyclic permutation of 1,2,3, (1.31)
0 if any two (or all) indices are equal.

© Cambridge University Press www.cambridge.org



http://www.cambridge.org/0521363128
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

0521363128 - Advanced Mathematical Methods for Engineering and Science Students
G. Stephenson and P. M. Radmore

Excerpt

More information

6 Suffix notation and tensor algebra

Hence cyclically permuting the indices i, j, k leaves ¢ unaffected,
whereas interchanging any two indices changes its sign:

€iik = €rij = €jkis (1.32)

6"k= _Eijk' (1.33)

Ji.

1.4 Vector identities

Consider the vector product ¢ =a X b. Then from (1.2)
c=(ae;) X (be;) =a;b;(e; X¢;). (1.34)

Now, in general, ¢=(c.e,)e;, using (1.3). Hence substituting for ¢
from (1.34) gives

c=aXb={(ab;i(e; Xe;).e)e, (1.35)
= aibiEkijek, (136)

using (1.30). In (1.36), summation over the indices , j and k is implied
so that

ax b = a,—bje‘l,-jel + a,-b]-€2,-je2 + aibj€3ije3 (1.37)

and the rth component of a X b is therefore

(axb),=¢€, ab;, (r=1,2,3). (1.38)
For the scalar triple product
(axXb).c=(abje; Xe;).cre; (1.39)
=abjcre, . (e; X e;) (1.40)
= €4;a;b;cy. (1.41)

Using (1.32), we have finally

(a X b) sC= €,~,~ka,~bjck. (142)
The scalar triple product does not depend on the order of the dot
and cross operations since a.(bXe¢)=(bXc).a=¢,,b,c.a, =
€,0,b,c,=(aXb) . c.

pq
We can use a result from vector algebra to derive an important

identity involving the Kronecker delta and the alternating symbol. We
have the standard result

(axb).(exd)=(a.c)b.d)—(a.d)b.c). (1.43)
Puttinga=e;, b=¢;, c=¢, and d=¢, then

(e;Xe;). (e Xe)=1(e;.e)(e.e)—(e.e)(e.e) (1.44)
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1.4 Vector identities 7

Now since for any vector A, A =(A.e,)e, (as in (1.3)),
(e; X e)=[(e; Xe).e,le, =¢€,;e, = €e,. (1.45)
Similarly
(ex X &) = €4ppe,. (1.46)
Hence the left-hand side of (1.44) becomes

(e; X e). (e Xe)= €8, "€, (1.47)
= e-ijmeklpémp (1.48)
= Gijme_klm) (149)

using (1.23) and (1.29). Substituting this into (1.44) and expressing all
the dot-products on the right-hand side using (1.23), we have

€iim€kim = 6ik6jl - 5i16jk- (1.50)

Example 6 A matrix ¢ has elements
Qi = Ny + €y, (1.51)
where n; are the components of a unit vector. Show that the elements
of the matrix ¢? are given by
() =2mn; = ;. (1.52)
Now
()5 = Pur = (miny + €geny)(nen; + €miTlm) (1.53)
= nmnnng + (€qnmn;
+ (€m0 + €k € kernfTliTy - (1.54)

Since €,,, is an antisymmetric symbol under interchange of any two
indices, quantities such as €;nn, are zero because for any pair of
values / and k, two terms (with opposite signs) result from the
summations over [ and k (for example, €;,n,n, cancels with

€210 = _Eilznlnz). HenCC, Since i, = 1,
(¢2)ij = n,nj + Ei[kfkmjnlnm (1.55)
=11t €€ lyP,. (1.56)
Using (1.50), (1.56) becomes
(¢2)ij = nin]' + (6""611 - 6,-j(§1m)n,nm (1.57)
=n;n; + mn; — S;mn, = 2mn; — Oy, (1.58)

as required.
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8 Suffix notation and tensor algebra

1.5 Vector operators
Defining the operator V, by

9
V.= o, (1.59)
and the vector operator V by
V=eV, (1.60)
the gradient of a scalar function ¢ = ¢(x,, x5, x3) is
grad ¢ =Vo¢ = eV¢—e1§¢Z+ezaj)+ 35)2 (1.61)
We note that the quantities Jx;/Jx, in Example 5 above can be
written
Ox;[3x, =V, x; = &,. (1.62)
The divergence of a vector function a(xy, x5, x3) is
diva=V.a=V,q =%, 9%, %6 (1.63)

Ox{ Ox, Oxi

The curl of a vector function a(x,, x,, x;) can be expressed, using

(1.38), as
o
(VXa), = €uVa, =€, = ) (1.64)
Ox;
giving
curla=VXa=e€;Va,. (1.65)

The curl of a vector (in cartesian coordinates) can easily be written
down in terms of determinants as follows: if in (1.41) a.(bXc¢) is
written out in full using the definition (1.31) of €, we find

a. (b X c) = éijka,-bjck (1.66)
= a1b2C3 - a1b3C2 + azb3cl - azb1C3 + a3b1C2 - a3b2C1, (167)

which can be written as the determinant

a4, a, a;
a.(bxXce¢)y=1|b;, b, by|. (1.68)
€, Cp €
Hence
VXa=e¢;eVa, (1.69)
€ € €
=V, V, Vi (1.70;

a, a, daj
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Various identities involving the vector operator can be derived using
the above results (and the summation convention). We illustrate this
with three examples.

Example 7
div(bg) = Vi(b,9) (1.71)
= ¢V.b; + (b;V.9) (1.72)
=¢divb+(b.V)p. - (1.73)
Example 8
curl(bg) = e;€,, V(b p) (1.74)
= ¢e;(€;V;by) + €€ (V)b (1.75)
= ¢ curlb + e;€,, (V)b (1.76)
=¢curib+ (V) Xb, (1.77)

where in the last term we have used (1.38) with a=V¢. o

Example 9
curl curl A = e;e;; V,(curl A), (1.78)
= ;€ V(€xumViAnm) (1.79)
= €€ €kim ViViAm (1.80)
= €€, €rm ViV A, (1.81)
= e(040;m — 8:,0:)V,V;A,, (1.82)
=e;Vi(V,.A4,,) —V;VeA, (1.83)
= grad(div A) — V?A, (1.84)
where
2 2 2
V2=V,V,=%%+%%+£—§. -

1.6 Orthogonal coordinate systems

So far we have considered only cartesian coordinates x;, x, and x;. We
will require, in later chapters, expressions for the operator div grad
(=V?) in coordinate systems based on cylindrical and spherical polar
coordinates.

Consider two points with cartesian coordinates (x;, x,, x3) and
(x; + dx{, x5+ dx;, x5+ dx3), where dx; are small displacements. The
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10 Suffix notation and tensor algebra

infinitesimal distance ds between these two points is given by
ds® = dx? + dx3 + dx% = dx, dx; (1.85)

(using the summation convention). We now transform to a new
coordinate system, say ¢;, g, and gs, the x; being functions of the g,.
If ds? can be written in the form

ds*=h3dqi+h3dq5+ h3dq5=h?dq?, (1.86)

then the new coordinates form an orthogonal coordinate system. For
cartesian coordinates h; = h,=h;=1and ¢;=x; (i=1, 2, 3). We now
give, without proof, expressions for the gradient, divergence and curl
in the new coordinate system in terms of the quantities A,.

If & is a scalar and A = e,A; is a vector then

e, 30 (23 od [} od

rad o =Vd =—
£ hy a‘h hzafh haa%

(1.87)

diV A = [ (h2h3A1) + (h h3A2) + (h thz,)]
hihyh,
(1.88)
he, hye, hses
1 a 3 2]
curl A= . (1.89)

hihyhs | 9. 9q, 9qs3

It is important to realise that in the above expressions the vectors e;
are unit vectors which are directed along the three new coordinate
axes and point in the direction of increasing coordinate values. Further

Poo L[ 2 (lhd) 5 (ki 3b) 9 (D))
hyhyhs L3q i \ hy 9q, 9q,\ h, 3q; g3\ h;y 3q, )

(1.90)

We now specialise these results to two particular coordinate systems
which are of importance in later chapters.

1. Cylindrical polar coordinates

We specify z, the distance of the point from the x;, x, plane, and the
polar coordinates p and ¢ of the projection of the point in this plane.
Thus q, = p, g, = ¢, g3 = z (see Figure 1.2). The vectors e; point in the
directions of increasing p, ¢ and z. The relationships between
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