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Preface

This monograph is an attempt to address the theory of turbulence from the points of
view of several disciplines. The authors are fully aware of the limited achievements
here as compared with the task of understanding turbulence. Even though necessar-
ily limited, the results in this book benefit from many years of work by the authors
and from interdisciplinary exchanges among them and between them and others. We
believe that it can be a useful guide on the long road toward understanding turbulence.

One of the objectives of this book is to let physicists and engineers know about the
existing mathematical tools from which they might benefit. We would also like to
help mathematicians learn what physical turbulence is about so that they can focus
their research on problems of interest to physics and engineering as well as mathe-
matics. We have tried to make the mathematical part accessible to the physicist and
engineer, and the physical part accessible to the mathematician, without sacrificing
rigor in either case. Although the rich intuition of physicists and engineers has served
well to advance our still incomplete understanding of the mechanics of fluids, the rig-
orous mathematics introduced herein will serve to surmount the limitations of pure
intuition. The work is predicated on the demonstrable fact that some of the abstract
entities emerging from functional analysis of the Navier–Stokes equations represent
real, physical observables: energy, enstrophy, and their decay with respect to time.

Beside this didactic objective, one of our scientific goals – in this book and in its
underlying research – was to see what we can learn about the physical properties of
turbulence using Sobolev spaces and the functional analysis methods that are based
on them. As we subsequently show, these spaces – which seem to be abstract mathe-
matical inventions – are in fact representations of observable physical quantities. In
this way we have recovered several parts of the conventional theory of turbulence, de-
riving rigorously from the Navier–Stokes equations (NSE) what had been arrived at
earlier by phenomenological arguments (Kolmogorov [1941a,b]), but in addition we
derive new results. We have shown that the conventional estimate of the number of de-
grees of freedom in homogeneous, isotropic turbulence (viz., (Reynolds number)9/4)

is at best an upper bound on the number of degrees of freedom needed for numeri-
cal simulations of real flows. We have also provided a rigorous, mathematical way
to avoid the common underlying assumption of the ergodicity of turbulent flows. In

ix
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x Preface

fact, we show that (in a suitable sense) time averages of various turbulent flow proper-
ties equal the related ensemble averages with respect to adequate statistical solutions;
we have also found a means for removing the high-wavenumber components of the
flow in such a way as to yield an effective viscosity, while providing a rough upper
bound on the error committed relative to the true solution of the flow equation.

Another task, the second scientific objective of this book, was to make the con-
nection between three of the classical approaches to turbulence: the Navier–Stokes
equations; the dynamical systems approach (following the work and ideas of Lorenz
[1963], Smale [1967], and Ruelle and Takens [1971]); and the conventional statistical
theory of turbulence (following the works and ideas of Kolmogorov [1941a,b, 1962],
Batchelor [1959], Kraichnan [1967], and others – e.g., Landau and Lifshitz [1971]
and Monin and Yaglom [1975]). Before the research underlying the material pre-
sented here, these classical approaches evolved largely independently. In particular,
the conventional theory of turbulence is based mostly on dimensional phenomeno-
logical arguments that traditionally make little reference to the NSE (see Tennekes
and Lumley [1972]). However, we believe it is useful and instructive to show that
many known results can be directly derived from the Navier–Stokes equations. We
develop those connections to the widest possible extent.

The level of mathematical preparation necessary for understanding this material is
an elementary knowledge of partial differential equations and their solutions in terms
of eigenfunction expansions. Terms and concepts beyond that level are presented in
detail as needed. Also included is a brief tutorial on Sobolev spaces and inequalities.
To aid readers unfamiliar with some useful classical inequalities, they are presented
(without proof ) in Chapter I along with the tutorial.

Mathematically oriented readers are assumed to be familiar with elementary physics
and continuum mechanics, including such principles as conservation of momentum
and energy and the relationship between stress and strain. For their benefit, Chapter I
contains also a short tutorial on the Kolmogorov (conventional) theory of turbulence.

One of the unresolved difficulties encountered in this monograph is due to limita-
tions in the present stage of the mathematical theory of the NSE; the theory is fairly
complete in the 2-dimensional case but still incomplete in dimension 3. Thus, while
we realize that natural turbulence is usually 3-dimensional, here we sometimes em-
phasize 2-dimensional flows, which are fully within the grasp of modern methods of
functional analysis.

The word turbulence has different meanings to different people, which indicates
that turbulence is a complex and multifaceted phenomenon. For mathematicians,
outstanding problems revolve around the Navier–Stokes equations (such as well-
posedness and low-viscosity behavior, especially in the presence of walls or singular
vortices). For physicists, major questions include ergodicity and statistical behavior
as related to statistical mechanics of turbulence. Engineers would like responses to
questions simple to articulate but amazingly difficult to answer: What are the heat
transfer properties of a turbulent flow? What are the forces applied by a fluid to its
boundary (be it a pipe or an airfoil)? To others pursuing the dynamical system ap-
proach, of interest is the large time behavior of the flow. Another ambitious question
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Preface xi

for engineers is the control of turbulence (to either reduce or enhance it), which is al-
ready within reach. Finally, a major goal in turbulence research – of interest to all
and toward which progress is constantly made – is trustworthy and reliable compu-
tation of turbulent flows (see e.g. Orszag [1970] and Ferziger, Mehta, and Reynolds
[1977]).

We do not address here any computational aspects, although this problem is very
much present in our thoughts; neither do we address control problems, nor most of the
practical engineering problems (see Schlichting [1960]). After the introductory and
tutorial Chapter I, the core of the book consists of four chapters, Chapters II–V. Each
of them, in addressing a particular topic, could actually be developed into a whole
independent volume. Chapter II summarizes some classical and some more recent
aspects of the mathematical theory of the Navier–Stokes equations – namely, their
formulation and well-posedness. We start by presenting the physical background of
the mathematical theory, introducing kinetic energy and enstrophy, conservation of
kinetic energy, and the Helmholtz–Leray decomposition of vector fields. We present
function spaces, the spaces of finite kinetic energy and finite enstrophy vector func-
tions, as well as some additional related abstract spaces. After recalling the weak
formulation of the NSE, a starting point of their mathematical theory going back to
the work of Jean Leray in the early 1930s, we recall the main theorems of existence,
uniqueness, and regularity of solutions. Then we describe analyticity properties of
the solutions; first, analyticity in time, which is sometimes related to intermittency (a
question briefly addressed in Sections 6.2 and 6.3 of ChapterV); and second, analytic-
ity in space and time (Gevrey class regularity), which is related in the space-periodic
case to the decline of Fourier coefficients of the solution. Finally, we briefly discuss
the no-slip case with moving boundaries and establish properties of the rate of dissi-
pation of flows.

Chapter III revolves around the idea (hinted at long ago by Landau and Lif-
shitz) that, in the permanent regime, turbulent flows as solutions of NSE are finite-
dimensional. This concept, which in fact follows easily from the Kolmogorov ap-
proach to turbulence, was novel in its time; by now it has been substantiated in many
different ways and extended as well to other equations modeling other physical phe-
nomena. In Chapter III we discuss finite dimensionality of turbulent flows in the
context of determining modes and nodes, showing that such flows are fully deter-
mined by either a finite (sufficiently large) number of modes or a finite number of
observation points (nodes). We discuss also the large time behavior in the context
of attractors and show finite dimensionality of attractors; all these dimensions are
physically relevant and related to the Landau–Lifshitz estimates. We briefly discuss
approximate inertial manifolds, the initial point for multilevel numerical algorithms
under development; in some sense, these algorithms produce in time what multigrid
or wavelet methods produce in space. Chapter IV comes closest to the issue of er-
godicity. We introduce, in space dimensions 2 and 3, stationary statistical solutions
and relate them to the limits of time averages. We consider also the corresponding in-
variant measure and relate it to the attractor that carries it. We then apply these tools
to the study of the cascade processes in turbulent flows.
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xii Preface

Finally, in Chapter V, we study the concept of statistical solutions, the evolution
of the probability distribution of the flow, and homogeneous flows. We start by in-
troducing the time-dependent statistical solutions on bounded domains. Then we
introduce the (space-invariant) homogeneous statistical solutions for space-periodic
flows and flows in the whole spaces. The Reynolds averaged equations are intro-
duced, and we then discuss self-similar homogeneous statistical solutions (SSHSS);
we introduce a 2-parameter family of such solutions from which, on the one hand, we
resolve a paradox on SSHSS pointed out by Hopf [1952] and, on the other hand, we
recover and complete some elements of the conventional theory of turbulence. For
instance, we show how the Kolmogorov spectrum follows naturally from NSE and
how the intermittency of turbulent flows is related to the fractal nature (see Novikov
and Stewart [1964] and Mandelbrot [1982]) of energy dissipation in 3-dimensional
flows.

As with all interdisciplinary work, it is not easy to write a book that is readable
by (and of equal interest to) people with differing perspectives. In order to overcome
this difficulty, we have divided each of the main chapters into two parts: the main
one, in which we hope the language is understandable by all, contains as few math-
ematical technicalities as possible yet still states the results in a rigorous way. Then,
as needed, a long appendix gives the details of the proofs.

The reader should note that some of the cited original articles underlying this
monograph may treat the same problem in two distinct publications: a more phys-
ically oriented treatment appearing in a physics or mechanics journal as well as a
corresponding “heavy” mathematical treatment presented in a mathematics journal.
That is clearly due to the idiosyncrasies of the two kinds of publications and the need
for different presentation styles when addressing the different audiences.

A few remarks will conclude this Preface. First, the authors are fully aware that
this book is difficult to read because, owing to the nature of the subject, it assumes
the reader’s familiarity with several distinct areas of knowledge. The three senior au-
thors hope that the younger generation, more accustomed to interdisciplinary work
than their predecessors, will find this work more readily accessible than will their
elders. In that regard, the three senior authors are delighted that their younger col-
league (RR) had agreed to involve himself so deeply in all the aspects of this book,
and they hope that this bodes well for its future – especially insofar as its interest and
accessibility to the younger generation are concerned.

Second, on the anecdotal side, we recall briefly the genesis of this interdisciplinary
collaboration. For a number of years CF and RT had worked independently on the
analysis of the Navier–Stokes equations; CF had learned the subject from Jacques-
Louis Lions and Giovanni Prodi; he collaborated with Prodi and started to develop a
rigorous theory of statistical solutions of those equations. RT learned the subject from
Jacques-Louis Lions and Jean Leray, and he also worked on the stochastic solutions
of the NSE. Then CF and RT met in the summer of 1970 at a meeting – organized by
Giovanni Prodi – in Varenna (Italy), and CF visited RT at Orsay (France) in the fall
of 1974. Their collaboration started, addressing such different aspects of the NSE as
analysis, statistical solutions, and the long time behavior (dynamical systems point
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Preface xiii

of view). At some point RT suggested that their collaboration would become more
interesting if they could join forces with a physicist.

By chance in the spring of 1980, Jacqueline Mossino, a former student of RT, met
Yvain Trève (OM’s co-worker) at a conference on plasma physics in Tucson (Ari-
zona), and contact was established by letter at a time predating e-mail; eventually
they met face-to-face for the first time at a meeting in Dekalb (Illinois) in 1981. At
that time, OM was working with Trève on finite–mode number approximations of
thermal convection satisfying the first and second laws of thermodynamics and dis-
covered that the qualitative nature of the numerical results depended critically on the
number of modes retained (Trève and Manley [1982]). As they started to interact,
CF, OM, and RT realized immediately the extent of the common ground between the
two communities and perspectives that they represent. That realization was the orig-
inal stimulus for much of the research reported in this volume. More specifically, the
direction of that research was set by the recognition that a simple, physically based
argument (conservation of energy and momentum in thermal convection; Trève and
Manley [1981]) yielded a result – a bound on the sufficient number of degrees of free-
dom for this fluid flow – that is essentially equivalent to an elaborate mathematical
exercise in Sobolev spaces (Foias, Manley, Temam, and Trève [1983b]). This collab-
oration has extended through the rest of the 1980s, the 1990s, and beyond.

The youngest author was a graduate student at Indiana University from 1992 to
1996, and he had many opportunities to be exposed to this research through courses,
informal discussions, and seminar lectures. He enthusiastically agreed to participate
in this book, which has been in process for a number of years, and eventually started
to collaborate on more recent works. As indicated earlier, the three senior authors are
delighted that RR has joined them in this task, and they see it as a good omen for a
successful transmittal of these results to the next generation.

Beside the prolonged and extended efforts of the four authors, this book has bene-
fitted extensively from the input and influence of many others by occasional collab-
orations, discussions, and other forms of interaction. It is not possible to name them
all, but we want to thank them for their constructive influence on us. Also, we would
like to extend our deepest thanks to those who have co-authored relevant publications
with one or more of the authors of this book, works that are partially or fully reported
in this monograph: Hari Bercovici, Peter Constantin (with whom three of us had an
extended collaboration), Arnaud Debussche, Jean-Michel Ghidaglia, David Gottlieb,
Martine Marion, Jean-Claude Saut, George Sell, Denis Serre, Edriss Titi, and Yvain
Trève.

Finally, the authors are very grateful to David Tranah and Alan Harvey of Cam-
bridge University Press for their interest, their encouragement, and their great pa-
tience in waiting for the delivery of the manuscript.

Ciprian Foias Oscar Manley
Ricardo Rosa Roger Temam
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