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Overview of Turbulence

Introduction

In this chapter we first briefly recall, in Section 1, the derivation of the Navier–Stokes
equations (NSE) starting from the basic conservation principles in mechanics: con-
servation of mass and momentum. Section 2 contains some general remarks on turbu-
lence, and it alludes to some developments not presented in the book. For the benefit
of the mathematically oriented reader (and perhaps others), Section 3 provides a fairly
detailed account of the Kolmogorov theory of turbulence, which underlies many parts
of Chapters III–V. For the physics-oriented reader, Section 4 gives an intuitive intro-
duction to the mathematical perspective and the necessary tools. A more rigorous
presentation appears in the first half of Chapter II and thereafter as needed. For each
of the aspects that we develop, the present chapter should prove more useful for the
nonspecialist than for the specialist.

1 Viscous Fluids. The Navier–Stokes Equations

Fluids obey the general laws of continuum mechanics: conservation of mass, energy,
and linear momentum. They can be written as mathematical equations once a repre-
sentation for the state of a fluid is chosen. In the context of mathematics, there are
two classical representations. One is the so-called Lagrangian representation, where
the state of a fluid “particle” at a given time is described with reference to its ini-
tial position. The other representation (adopted throughout this book) is the so-called
Eulerian representation, where at each time t and position x in space the state – in par-
ticular, the velocity u(x, t) – of the fluid “particle” at that position and time is given.

In the Eulerian representation of the flow, we also represent the density ρ(x, t) as
a function of the position x and time t. The conservation of mass is expressed by the
continuity equation

∂ρ

∂t
+ div(ρu) = 0. (1.1)

The conservation of momentum is expressed in terms of the acceleration γ and the
Cauchy stress tensor σ :

ργi =
3∑

j=1

∂σij

∂xj
+ fi, i = 1, 2, 3. (1.2)
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2 I Introduction and Overview of Turbulence

Here γ = (γ1, γ2, γ3) and σ = (σij )i,j=1,2,3, componentwise in the 3-dimensional
case. Moreover, f = (fi, f2, f3) represents volume forces applied to the fluid.

The acceleration vector γ = γ (x, t) of the fluid at position x and time t can be
expressed, using purely kinematic arguments, by the so-called material derivative

γ = Du
Dt

= ∂u
∂t

+ (u · ∇)u, (1.3)

or, componentwise,

γi = ∂ui

∂t
+

3∑
j=1

uj
∂ui

∂xj
, i = 1, 2, 3.

Inserting this expression into the left-hand side (LHS) of equation (1.2) yields the
term ρ(u · ∇)u, which is the only nonlinear term in the Navier–Stokes equations;
this term is also called the inertial term. The Navier–Stokes equations are among the
very few equations of mathematical physics for which the nonlinearity arises not from
the physical attributes of the system but rather from the mathematical (kinematical)
aspects of the problem.

Further transformations of the conservation of momentum equation necessitate
additional physical arguments and assumptions. Rheology theory relates the stress
tensor to the velocity field for different materials through the so-called stress–strain
law and other constitutive equations. Assuming the fluid is Newtonian, which is the
case of interest to us, amounts to assuming that the stress–strain law is linear. More
precisely, for Newtonian fluids the stress tensor is expressed in terms of the velocity
field by the formula

σij = µ

{
∂ui

∂xj
+ ∂uj

∂xi

}
+ (λ divu − p)δij, (1.4)

where p = p(x, t) is the pressure. Here, δij is the Kronecker symbol and µ, λ are
constants. The constant µ is called the shear viscosity coefficient, and 3λ+2µ is the
dilation viscosity coefficient. For thermodynamical reasons, µ > 0 and 3λ + 2µ ≥
0. Inserting the stress–strain law (1.4) into the momentum equation (1.2), we obtain

ρ

{
∂u
∂t

+ (u · ∇)u
}

= µ�u + (µ + λ)∇ divu − ∇p + f . (1.5)

Equations (1.1) and (1.5) govern the motion of compressible Newtonian fluids such
as the air at high speeds (Mach number larger than 0.5). If we also assume that the
fluid is incompressible and homogeneous, then the density is constant in space and
time: ρ(x, t) ≡ ρ0. In this case, the continuity equation is reduced to the divergence-
free condition:

divu = 0. (1.6)

Because the density is constant, we may divide the momentum equation (1.5) by ρ

and consider the so-called kinematic viscosity ν = µ/ρ0; we may then replace the
pressure p and the volume force f by the kinetic pressure p/ρ0 and the mass den-
sity of body forces f/ρ0, respectively. In doing so, and taking into consideration the
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1 Viscous Fluids. The Navier–Stokes Equations 3

divergence-free condition (1.6), we obtain the Navier–Stokes equations for a viscous,
incompressible, homogeneous flow:

∂u
∂t

− ν�u + (u · ∇)u + ∇p = f, (1.7a)

∇ · u = 0, (1.7b)

where, for notational simplicity, we represent the divergence of u by ∇ · u. For all
pratical purposes, the density has actually been normalized to unity; even so, we may
sometimes replace (1.7a) by (1.5), remembering then that ∇ ·u = 0 and ρ is constant.

For more details on the physical aspects of fluid mechanics, we refer the reader to
the classical books of Batchelor [1988] and Landau and Lifshitz [1971].

It is readily accepted that the Navier–Stokes equations govern the motion of com-
mon fluids such as air or water, so we are faced with the persistent challenging ques-
tion of recovering from (1.7) such complex motions as that of smoke dispersion in
the air and the turbulent flow of a river around a bridge pillar.

The flow of fluids at the microscopic level is governed by phenomena in the realm
of statistical mechanics of fluids. The appropriate statistics is given by the solution
of the Boltzmann equation. That equation represents the evolution of the governing
distribution function, which is dependent on the position and velocity of the particles
colliding with one another as a result of thermal excitation at any finite temperature.
The collisions are described by an integral collision operator. In general, the colli-
sion operator represents simultaneous collisions among many particles, necessitating
the use of a many-particle distribution. As such, it is very complicated and essen-
tially impossible to evaluate precisely. Only in the case of dilute gases can one limit
oneself to considering the evolution of a single-particle distribution and to binary col-
lisions, since many body collisions are highly unlikely. In this idealized situation,
the collision operator can be approximated by first-order and second-order spatial
derivatives. The former is the familiar pressure gradient and the latter is the Laplac-
ian operating on the velocity, multiplied by a constant known as the viscosity. With
that approximation in hand, we can take the appropriate moments of the one-particle
Boltzmann equation and so derive first the conservation of mass equation and sec-
ond the conservation of momentum equation that we recognize as the NSE (when the
incompressibility condition is a valid assumption).

Although such a derivation has been carried out for dilute gases, a corresponding
exercise for liquids remains an open problem. This is because binary collisions play
a relatively minor role in liquids, which are much denser than gases and hence feature
collisions between clusters of particles. However, for practical reasons and lacking a
better option, we use the Navier–Stokes equations with a simple constant viscosity
as a reasonable model for liquid flows.

The origin of viscosity imposes a limit on the domain of validity of the Navier–
Stokes equations. Thus phenomena on a length scale comparable to or smaller than
the collision mean free path in air at atmospheric pressure (say, 10−3 cm) cannot be
described by a continuum model such as the NSE. Subsequently we will learn about
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4 I Introduction and Overview of Turbulence

some natural lengths that characterize the length scale region in which flow energy
dissipation is dominated by viscous phenomena. It will be important then to be sure
that we are still in the regime characterized by a continuum model of the flow. A
similar cautionary remark applies to the amplitude of fluctuations in turbulent flows:
once we are in a regime in which those fluctuations are comparable with thermally (fi-
nite temperature) induced fluctuations, the model based on Navier–Stokes equations
ceases to be relevant.

Nondimensional Form of the Navier–Stokes Equations

It is sometimes convenient, both for physical discussions and mathematical trans-
parency, to consider a nondimensional form of the conservation of momentum equa-
tion. For that purpose we introduce a reference length L∗ and a reference time T∗ for
the flow, and we set

x = L∗x ′, t = T∗ t ′, p = P∗p ′, u = U∗u ′, f = L∗
T 2∗

f ′,

where P∗ = U 2∗ and U∗ = L∗/T∗ are a reference pressure and a reference velocity,
respectively. By substitution into (1.7) we obtain for u ′, p ′, f ′ the same equation but
with ν replaced by Re−1, where Re is a nondimensional number called the Reynolds
number:

Re = L∗U∗
ν

. (1.8)

The value of the Reynolds number depends on the choice of the reference length and
velocity. Usually, if � (the domain occupied by the fluid) is bounded then L∗ can be
taken as the diameter of � or as some other large-scale length related to �, such as
the width of a channel. The choice of U∗ (and hence of T∗) depends on the type of
forcing of the flow; it can be related to the forces applied at the boundary of � or to
a pressure gradient, for example. Various choices of L∗ and U∗ can be appropriate
for a given flow, leading to various definitions of the Reynolds number, but turbulent
flows result for all appropriate choices when Re is large. How large depends to some
extent on the shape of the domain occupied by the fluid. Once the shape of the do-
main � is fixed, however, rescalings in length (L∗) and velocity (U∗) and changes in
viscosity (ν) affect the equations only through the single parameter Re.

Hence, different experiments may lead to the same nondimensional equations. For
example, multiplying the velocity by 2 and dividing the diameter of the domain by
2 leaves the Reynolds number unchanged, so we can pass from one experiment to
another; this is the Reynolds similarity hypothesis constantly used in mechanical en-
gineering. At a given Reynolds number, flows remote from the boundaries of the
domain �, irrespective of the latter’s shape, are similar owing to some universal-
ity properties of turbulent flows. Moreover, with flows around blunt bodies (say,
a sphere), as the body’s radius increases and the flow velocity and/or viscosity is
adjusted so as to maintain the Reynolds number constant, the flow throughout the
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2 Turbulence: Where the Interests of Engineers and Mathematicians Overlap 5

modified flow domain remains similar. That is what has made possible the design of
aircraft by means of relatively small models tested in moderately sized wind tunnels.

In Chapter III, instead of the Reynolds number we will use another nondimen-
sional number: the Grashof number (see Section 13 in Chapter II).

A heuristic argument illustrating the significance of the Reynolds number emerges
by comparing the inertial and dissipation terms of the Navier–Stokes equations. The
inertial term (u · ∇)u has dimension

U 2∗
L∗

,

while the dissipation term has dimension

ν
U∗
L2∗

.

The inertial term dominates when

Re = L∗U∗
ν


 1.

However, a much more subtle analysis that is valid at each length scale is made for
the Kolmogorov theory of turbulence.

By setting Re = +∞ (i.e., ν = 0), we obtain the case of inviscid flows. In this
case, the divergence-free condition is retained but the momentum equation changes,
resulting in the Euler equations for inviscid perfect fluids:

∂u
∂t

+ (u · ∇)u + ∇p = f, (1.9a)

∇ · u = 0. (1.9b)

Note that some of the difficulties encountered in studying turbulent behavior, a
largely inviscid regime, arise because the transition from Euler’s equations to the
Navier–Stokes equations necessitates a change from a first-order system to a second-
order one in space (∇ to �), which involves a singular perturbation.

2 Turbulence: Where the Interests of Engineers
and Mathematicians Overlap

Principal substantive questions related to turbulence have been raised since the begin-
ning of the twentieth century, and a large number of empirical and heuristical results
were derived – motivated principally by engineering applications. This includes the
work of Lamb [1957], mostly on addressing idealized inviscid flows; Prandtl [1904],
on eddy viscosity and boundary layers; Taylor [1935, 1937], on viscous flows; and
von Karman [1911, 1912], on the nature of the boundary layer.

At the same time, in mathematics there appears the pioneering work of Jean Leray
[1933, 1934a,b] on the Navier–Stokes equations. Leray speculated that turbulence is
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6 I Introduction and Overview of Turbulence

due to the formation of point or “line vortices” on which some component of the ve-
locity becomes infinite.1 To enable dealing with such a situation, he suggested the
concept of weak, nonclassical solutions to the Navier–Stokes equations (1.7), and
this has become the starting point of the mathematical theory of the Navier–Stokes
equations to this day. We will consider this approach in Chapter II and beyond. It is
noteworthy that, more generally, Leray’s ideas serve also as the starting point for sev-
eral important elements of the modern theory of partial differential equations. Even
today, despite much effort, Jean Leray’s conjecture concerning the appearance of sin-
gularities in 3-dimensional turbulent flows has been neither proved nor disproved.
Let us mention, however, the result of Caffarelli, Kohn, and Nirenberg [1982] (see
also Scheffer [1977]), which considerably extends an earlier result of Leray: Given
the possibility that the singular points are a fractal set (assuming that such a set exists),
the 1-dimensional Hausdorff measure of that set in space and time is 0. Hence the
occurence of smooth line vortices is not possible, explaining our quotation marks
around “line vortices.” Nevertheless, for all physical purposes this powerful mathe-
matical result leaves room for a tremendously complex set of singularities, and so we
remain far from closing the issues raised by Leray’s conjecture.

Before continuing with these historical notes, we remark in passing that engineers
are not directly affected by such purely mathematical issues; rather, they want to
calculate or measure certain physical quantities (forces, velocities, pressures, etc.).
Here, however, beside the possible occurrence of singularities, another critical aspect
of turbulence comes to mind: in a turbulent flow, many interesting quantities vary
rapidly in time and cannot be readily measured. In practice, all that can be measured
in laboratory experiments are averages (usually time averages). These averages are
well-defined, reproducible quantities. This leads to the concept of ensemble averages
underlying the conventional theory of turbulence, and to the concept of statistical so-
lutions of the Navier–Stokes equations (1.7). It leads also to the idea of ergodicity,
which is taken for granted by engineers. Loosely speaking, for all initial experimental
conditions and for all sorts of reasonable ensemble averages, the experiments always
yield the same measured results to within the accuracy of the measurements. We
address here those questions of direct interest to engineers: the need for statistical so-
lutions, the equivalence between ensemble averages and time averages (a question
addressed in Chapter IV), and the so far unchallenged issue of the axiomatic nature
of ergodicity.

We return to our brief overview of some highlights in the history of the studies
of turbulent flows. It is impossible to explore here all the aspects of that history.
Hence, with apologies to all whose important contributions are not mentioned here,
we limit ourselves to those aspects of the history most relevant to the subject of this
monograph.

1 In fact, if such discontinuities occur then another question of physical nature needs to be
raised concerning the validity of the Navier–Stokes equations themselves; indeed, at very
short distances of order 10−3 cm (the collision mean free path of the particles), the fluid
equations are no longer pertinent.
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2 Turbulence: Where the Interests of Engineers and Mathematicians Overlap 7

Turbulent flows have mystified people for ages, as evidenced for example by
Leonardo da Vinci’s sketches of the turbulent wakes downstream of some bridge
columns. Beginning with careful experimental studies of flows under various exper-
imental conditions (Reynolds [1883, 1895]) and with the subsequent formulation of
the Navier–Stokes equations, turbulence became a subject of thorough scientific in-
quiry. For many years, two difficulties held the attention of various investigators. The
first was a technical mathematical obstacle: the presence of the inertial term (a qua-
dratic nonlinearity) precludes a straightforward use of the many available tools of
perturbation methods. The structure of the equations demands that, at any given step
in an approximation scheme, information from the next step is necessary. This had
led to many attempts at formulating the so-called closure schemes, where at some
step in the approximation sequence an assumption about the nature of the subsequent
term is made, thereby terminating that sequence. Such an assumption, usually jus-
tified in terms of intuitive physical arguments, was then used to break the impasse
in the approximation sequence. In principle, closure schemes by and large call for
unprovable assumptions beyond those composing the basis for the Navier–Stokes
equations. Some of the better-known closure schemes may be found in such texts as
Tennekes and Lumley [1972], Leslie [1973], and Lesieur [1997], although further at-
tempts (and controversies) in this area continue. As we shall find in the present work,
the invention of the so-called inertial manifolds in the context of the rigorous theory
of NSE (as well as of other nonlinear partial differential equations) opens the door to
mathematically more soundly based schemes for computational approaches, offering
an alternative to the conventional closure schemes.

The second obstacle to progress in the theory of turbulence was largely concep-
tual. Namely, how was it possible for a system described by perfectly deterministic
equations to exhibit behavior that was undeniably statistical in nature? This aspect
of turbulent flows, both from the experimental side and from the nascent theoretical
side, is dealt with at length in the monumental work of Monin and Yaglom [1975].
Hopf [1952], followed by Foias and Prodi [1976] (see also Foias [1972, 1973, 1974]),
studied an extension of Liouville’s theorem that in principle yields the probability
distribution function underlying the Navier–Stokes equation. Many of these efforts
rested on the experimental and theoretical work of Taylor [1935, 1937] and von Kar-
man and Howarth [1938], who clarified, on intuitive grounds, the nature of homoge-
neous isotropic turbulence. The simplifications resulting from the symmetries inher-
ent in this idealized form of turbulence yielded the well-known von Karman–Howarth
ordinary differential equation for the self-similar evolution of the two-point veloc-
ity correlation tensor. This idealization has also yielded Kolmogorov’s theory for
the spectrum of homogeneous isotropic turbulence in three dimensions (Kolmogorov
[1941a,b]) (and later Batchelor’s [1959] and Kraichnan’s [1967] corresponding re-
sults for turbulence in two dimensions), a subject of the next section. All of these
results were obtained without full understanding of the origin of the statistical na-
ture of turbulence. A significant breakthrough occurred in the 1960s and 1970s with
the discovery of stochastic instabilities in seemingly innocuous low-order ordinary
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8 I Introduction and Overview of Turbulence

differential equations (Lorenz [1963]) and in some nonlinear difference equations
(Feigenbaum [1980]). Subsequent research (Foias and Prodi [1976], Vishik and Fur-
sikov [1977a,b, 1978], Foias and Temam [1979]) on dynamical systems governed by
nonlinear partial differential equations revealed that such dynamical systems may
reside, in finite-dimensional function spaces, on compact attractors that may be char-
acterized by chaotic behavior.

It is now appropriate to reiterate a point hinted at earlier, namely, the essential
need for careful mathematical analysis when dealing with nonlinear entities such as
the Navier–Stokes equations. While much of our physical intuition serves us well in
the domain of linear phenomena modeled adequately by linear differential and par-
tial differential equations, it can fail us – with potentially disastrous consequences –
in nonlinear domains. A fairly instructive example, outside the realm of this book
but worth mentioning here, concerns modeling sonic flow transition as a boundary
value problem rather than (and more correctly) as an initial value problem (Greenberg
and Trève [1960]). Although this may appear to be unnecessary pedantry, it clearly
makes a lot of difference in the context of, say, nuclear reactor safety (Bilicki et al.
[1987]). Unlike the case in linear systems, in nonlinear systems small causes can lead
to very large effects indeed, as well as to qualitative differences. Because nonlinear
equations can have multiple, qualitatively different solutions (different basins of at-
traction), a small change in initial conditions can sometimes lead to radically different
time-asymptotic behavior. An even more dramatic, counterintuitive example is the
previously mentioned possibility of chaotic behavior in what at first sight seem to be
innocent deterministic systems (Lorenz [1963], Feigenbaum [1980], Smale [1967]).
Here is a class of problems in which necessarily limited computer “experiments” can
lead to misleading conclusions about the behavior of a system as a function of the
governing parameters. Only a thorough analysis of the system can reveal its true
nature. Occasionally, such an analysis will reveal, even without detailed numerical
computations, an unphysical aspect of the system (e.g., infinite energy density, de-
creasing entropy, or other pathologies), which is a clear alert to the flawed nature of
the system model.

In this work we concentrate on those aspects of turbulent fluid flows that can be rep-
resented in terms of so-called Sobolev spaces – that is, a class of functions satisfying
the given boundary conditions – and the given physical constraints, such as diver-
gence-free (incompressible) flow. The various norms (i.e., various integrals of some
seemingly abstract quantities) in these function spaces are in fact readily recognized
as tangible physical quantities that are more or less readily accessible to direct ex-
perimental observation. The relationships among these norms, and the rules for their
manipulations, reveal some aspects of the turbulent flows that justify many ad hoc
interpretations and inspire insights derived from direct observations of turbulence
while also revealing some hitherto unrealized ones. As such, these mathematical en-
deavors can serve to enlarge our intuitive horizons beyond the limits of linear theories
and models.
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3 Elements of the Theories of Turbulence of Kolmogorov and Kraichnan 9

3 Elements of the Theories of Turbulence
of Kolmogorov and Kraichnan

Turbulent flows seem to display self-similar statistical properties at length scales
smaller than the scales at which energy is delivered to the flow. Kolmogorov [1941a,b]
argued that, at these scales, in three dimensions, the fluids display universal statisti-
cal features. Turbulent flow is conventionally visualized as a cascade of large eddies
(large-scale components of the flow) breaking up successively into ever smaller sized
eddies (fine-scale components of the flow; Onsager [1945]). Such a cascade, or flow
of kinetic energy from large to small scales, is taken to occur in a regime at lengths suf-
ficiently large for the effects of viscosity to be inconsequential. The apparent energy
dissipation – that is, the removal of energy from one length scale to a smaller one –
is solely due to the presence of the nonlinear (inertial) term in the Navier–Stokes
equations. The energy dissipation rate ε = νκ 3

0 |∇u(x, t)|2 is assumed to be con-
stant in space and time. A further essential assumption is that the cascade proceeds so
that, at every length scale (or at every corresponding wavenumber), there is an equi-
librium between energy flowing in from above to a given scale and that flowing out
to a lower scale. Such a picture and the associated assumptions imply that, in this
range of length scales (or this range of wavenumbers), the energy density at a given
wavenumber can depend only on the energy dissipation rate ε and the wavenumber
k itself. Then dimensional analysis alone yields S(κ) = const. × ε2/3/κ 5/3 for the
energy density. Such a cascade process cannot continue to arbitrarily small length
scales because, as the norm of the Laplacian operator increases with the decreasing
length scale, eventually the effects of molecular dissipation begin to dominate the
nonlinear inertial term. That length, denoted by  d, is the endpoint of the inertial
range and the beginning of the dissipation range.

Let us determine  d. At each scale  (or wavenumber κ =  −1), we can define by
dimensional analysis, through ε and  , a natural time scale τ and speed u. Indeed,
ε =  2/τ 3 gives τ = ( 2/ε)1/3 and u =  /τ = ( ε)1/3. Now, the dissipation length
 d is where the viscous term ν�u starts to dominate, on average, the inertial term.
Hence,

ν�u ∼ νu

 2
∼ ν

 τ
> (u · ∇)u ∼ u2

 
∼  

τ 2
.

Therefore,

 2 < ντ = ν

(
 2

ε

)1/3

⇐⇒  4/3 <

(
ν3

ε

)1/3

and

 d =
(
ν3

ε

)1/4

. (3.1)

Kolmogorov thus inferred that, in 3-dimensional turbulent flows, the eddies of
length size sensibly smaller than  d are of no dynamical consequence. As we said,
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10 I Introduction and Overview of Turbulence

the length  d as defined by (3.1) is known as the Kolmogorov dissipation length. The
corresponding wavenumber,

κd = 1

 d
=

(
ε

ν3

)1/4

, (3.2)

is the Kolmogorov dissipation wavenumber.
The inertial range, within which inertial effects dominate, is the range  1 <  <

 d, where  1 = L1 is the wavelength at which energy is injected in the flow. To each
length  in this range we can associate a Reynolds number Re = u /ν; hence,

Re3/4
 =  

(
ε

ν3

)1/4

.

The largest of these Reynolds numbers obtained for  = the Kolmogorov macro-scale
length L∗ � L1 is the Reynolds number Re of the flow. Hence, with (3.1),

Re =
(
L∗
 d

)4/3

, or L∗ = Re3/4  d. (3.3)

This relationship leads naturally to the heuristic estimate of the number of degrees
of freedom in 3-dimensional flows, which is Re9/4. As we shall see, this heuristic
estimate is actually an upper bound on the sufficient (but not necessary) number of
degrees of freedom in 3-dimensional turbulent flows.

We now present a somewhat more elaborate derivation (but one that is still divorced
from the Navier–Stokes equations) of the so-called Kolmogorov spectrum.

Let ε denote the average of the energy per unit mass. Then, according to the Kol-
mogorov theory, the length  d at which the turbulent eddies are rapidly annihilated
by the viscosity should be a universal function of ε and the kinematic viscosity ν,

namely:

 d = f(ν, ε). (3.4)

In particular, f should be independent of the choice of units for space and time. Thus,
if we pass from x, t to x ′ = ξx and t ′ = τ t then we should still have

 ′
d = f(ν ′, ε ′). (3.5)

Here ν ′ and ε ′ are not independent of ν and ε, and dimensional analysis yields

 ′
d = ξ d, ν ′ = ξ 2

τ
ν, ε ′ = ξ 2

τ 3
ε; (3.6)

that is,

ξf(ν, ε) = f(ξ 2τ−1ν, ξ 2τ−3ε). (3.7)

With the choices

ξ 2

τ
= 1

ν
and

ξ 2

τ 3
= 1

ε
, (i.e., τ = (εν)1/2 and ξ = ε1/4/ν3/4),
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