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AN INVITATION TO NONSTANDARD ANALYSIS

TOM LINDSTREM

INTRODUCTION

Nonstandard Analysis - or the Theory of Infinitesimals as some
prefer to call it - is now a little more than 25 years old (see Robinson
(1961)). In its early days it was often presented as a surprising
solution to the old and - it had seemed - impossible problem of providing
infinitesimal methods in analysis with a logical foundation. It soon
became clear, however, that the theory was much more than just a
reformulation of the Calculus, when Bernstein and Robinson (1966) gave the
first indication of its powers as a research tool by proving that all
polynomially compact operators on Hilbert spaces have nontrivial invariant
subspaces. Since then nonstandard techniques have been used to obtain new
results in such diverse fields as Banach spaces, differential equations,
probability theory, algebraic number theory, economics, and mathematical
physics just to mention a few. Despite the wide variety of topics
involved, these applications have enough themes in common that it is
natural to regard them as examples of the same general method.

This paper is intended as an exposition of these recurrent
themes and the theory uniting them. I have called it "An invititation to
nonstandard analysis" because it is meant as an invitation - a friendly
welcome requiring no other background than a smattering of general
mathematical culture. My point of view is that of applied nonstandard
analysis; I'm interested in the theory as a tool for studying and creating
standard mathematical structures. As such, I feel that it is of greater
interest to the analyst than to the logician, and this attitude is, I
hope, reflected in the presentation; put paradoxically, I have tried to
make the subject look the way it would had it been developed by analysts
or topologists and not logicians. This is the explanation for certain
unusual features such as my insistence on working with ultrapower models

and my willingness to downplay the importance of first order languages.
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2 LINDSTROM: INVITATION TO NONSTANDARD ANALYSIS

Although the presentation may be a little unconventional, the
choice of topics is not; there seems to be a fairly general agreement on
what are the most important and powerful nonstandard techniques, and I
have seen it as my main task to give a full and detailed account of these.
The idea has been to bring the reader to the point where he can study more
specialized nonstandard papers with only an occasional consultation of the
literature, and where he can begin to think of applying nonstandard
methods in his own field of interest. Unfortunately, this emphasis on
methodology and basic techniques has made it impossible to include
convincing examples of new results and at the same time keep the paper
within reasonable bounds. But as the other contributions to the present
volume contain applications which in depth and variety far exceed anything
I could conceivably have put into an introduction of this kind, I do not
think that these omissions are of much consequence.

The paper consists of four chapters, each divided into three
sections. The first three chapters contain a systematic exposition of
nonstandard techniques in different branches of analysis, while the fourth
focuses on the underlying logical principles. Not all readers will want
or need to read everything; those who are eager to get on to applications
may wish to skip Chapter IV at the first reading and only concentrate on
the most relevant parts of the other chapters. The chart in Figure 1
traces the dependences between the various sections in detail. Note in
particular the sections in the dotted boxes; they are not really part of
the systematic development of the theory, but contain examples and
applications which add flesh and blood to the bare theoretical bones of
the other sections. The paper ends with a comprehensive set of Notes with

suggestions for further study.
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I. A SET OF HYPERREALS
Although nonstandard methods have been used in most parts of
mathematics, I will start where it all began historically - with the

construction of a number system *R extending R and containing infinitely

large and infinitely small elements.

I.1  CONSTRUCTION OF *R

To convince you that this construction is quite natural and
not the least mysterious, let me compare it to something you are all
familiar with - the construction of the reals from the rationals using
Cauchy-sequences. Recall how this is done: If C is the set of all
rational Cauchy-sequences, and = is the equivalence relation on C defined

by
{an) = {bn} iff lim (an—bn) = 0, (1)

n-w
then the reals are just the set R = C/ = of all equivalence classes. To

define algebraic operations on R, let (an> denote the equivalence class of
the sequence (an}, and define addition and multiplication componentwise
<a_ > + <b > = <a _+b _>; <a ><b > = <a_+b >. (2)
n n n n n n n n
The order on R is defined simply by letting <an> < <bn> if there is an
€ € Q+ such that an < bn—e for all sufficiently large n. Finally, we can
identify the rationals with a subset of R through the embedding
a - <a,a,a,...>. (3)

The construction of *R follows exactly the same strategy.
Beginning with the set s of all sequences of real numbers, I shall
introduce an equivalence relation ~ on & and define *R as the set a/~ of

all equivalence classes. If as above <an> denotes the equivalence class
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I.1. CONSTRUCTION OF *R 5

of the sequence {an}, the algebraic operations are defined componentwise

as in (2), and I shall also introduce an order on *R which turns it into
an ordered field. Finally, R will be identified with a subset of *R
through the embedding a -+ <a,a,a,...>.

Before I define the equivalence relation ~, it may be wise to
say a few words about the philosophy behind the construction. When we
create the reals from the rationals, we are interested in constructing
limit points for all "naturally" convergent sequences. Since the limit is
all we care about, it is convenient to identify as many sequences as
possible; i.e. all those which converge to the same "point". No attention

is paid to the rate of convergence: hence the two sequences {%) and (\/-11;}

are identified with the same number 0 although they converge at quite
different rates. In creating *R from R, we want to construct a rich and
well-organised algebraic structure which encodes not only the limit of a
sequence but also its mode of convergence. To achieve this, we shall
reverse the strategy above and identify as few sequences as possible.

This sounds silly; to "identify as few sequences as possible"

must surely mean the trivial identification (an} ~ {bn} iff (an) = (bn}.

Well, it doesn't if you also want *R to have all the nice algebraic

properties of R.

I1.1.1 Example
Let (an} = {1,0,1,0,1,...} and {bn} = {0,1,0,1,0,...}; then

{an}-{bn) = 0, although {an) and {bn} are both non-zero. Thus if we use

the trivial identification, we get a structure with zero divisors.

The idea is to make the equivalence relation ~ just strong
enough to avoid the problem of zero divisors. Before 1 can give the
definition, I have to fix a finitely additive measure on N with the

following properties.

I.1.2 Definition
Throughout this chapter m denotes a (fixed) finitely additive

measure on the set N of positive integers such that:

(i) For all A ¢ N, m(A) is defined and is either 0 or 1.
(ii}) m(N) = 1, and m(A) = 0 for all finite A.
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6 LINDSTROM: 1I. A SET OF HYPERREALS

That m is a finitely additive measure means, of course, that
m(A U B) = m(A) + m(B) for all disjoint sets A and B. Note that m divides
the subsets of N into two classes, the "big" ones with measure one and the
"small” ones with measure zero, in such a way that all finite sets are
"small”. The existence of such measures is an exercise in Zorn's lemma
(see the Appendix, Proposition A.1).

Observe that for any A < N, either m(A) = 1 or m(AC) = 1 but
not both. Moreover, if m(A) = 1 and m(B) = 1, then m{A N B) = 1 since

n((anB% = ma®us® < na® + 0% = 0+0 - o.

1.1.3 Definition
Let ~ be the equivalence relation on the set a of all

sequences of real numbers defined by

{a ) ~ {b ) iff m{n: a=b} =1,

i.e. if {an} equals {bn} almost everywhere.

Having defined the equivalence relation ~, I can now do as
promised and let *R = a/~ be my set of nonstandard reals or hyperreals.

If <an> denotes the equivalence class of the sequence {an}, define

addition and multiplication in *R by

It

<a > + <b > =<a +b > ; <a>:<b > <a_-b > (4)
n n n n n n n

and order it by

)

<a_ > < <b > iff m{m: a <b } 1. (5)
n n n n

1 really ought to check that these definitions are independent of the

representatives {an),{bn} of the equivalence classes (an>,<bn>, but I

shall gladly leave all book-keeping of this sort to you.
To see that the problem of zero divisors has disappeared,

assume that <a_>-<b > = <0,0...>, i.e. m{n: a_+b_ = 0} = 1. Since
n n n n

{n: a ‘b= 0} = {n: an=0) U {n: bn

LN 0}, either {n: an=0} or

{n: bn=0) has measure one, and thus either <an> = <0,0,...> or
<bn) = €0,0,...>. Note that the conditions on m are exactly right for

this argument to work.
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I.1. CONSTRUCTION OF *R 7

But *R is much more than an algebraic structure without zero
divisors; it is an ordered field with zero element 0 = <0,0...> and unit
1 = <1,1,...>. As proving this in detail would just be boring, I'll

restrict mystelf to the following typical example.

1.1.4 Example
If a,b,c € *R are such that a > 0 and b < ¢, how do we prove

that ab < ac? Well, if a = (an>, b = <bn>, and ¢ = <cn>, then there are
sets A, B ¢ N of m-measure one such that an > 0 if n € A and

b <c ifne€B. Thus a b < a c¢_ for all n € ANB, and since m(ANB) = 1,
n n nn nn

this proves that ab < ac.

As already indicated
a - <a,a,a,...> (6)

is an injective, order preserving homomorphism embedding R in *R, and I
shall identify R with its image under this map. Thus all real numbers are
elements of *R, but what do its other members look like? 1In particular,
where do the infinitesimal and infinite numbers come from? Let us first

agree on the terminology.

I.1.5 Definition
(a) An element x € *R is infinitesimal if -a < x < a for all
positive real numbers a.
(b) An element x € *R is finite if -a < x < a for some
positive real number a. An element in *R which is not finite is called

infinite.

1
Three examples of infinitesimals are O, 61 = <H>' and

&5, = <\/%>. To check that, say, &, is infinitesimal, note that for any

2 1

positive a € R, the set {n: -a < }11- < a} contains all but a finite number
of n's and hence has measure one. Observe also that since 61 # 62. the
two sequences (%} and {‘/%} converging to zero at different rates are

represented by different infinitesimals. Finally note that zero is the
only infinitesimal real number. Examples of infinite numbers, one

2
positive and one negative, are <n> and <-n >.
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8 LINDSTROM: I. A SET OF HYPERREALS

It is easy to check that the arithmetic rules one would expect
really hold; e.g. the sum of two infinitesimals is infinitesimal, and so
is the product of a finite number and an infinitesimal one. More
interesting is the following observation which shows that the finite part

of *R has a very simple structure.

1.1.6 Proposition
Any finite x € *R can be written uniquely as a sum X = a + €,

where a € R and ¢ is infinitesimal.

Proof. The uniqueness is obvious since if x = a1 + 81 = a2 + €2. then

a1 - az = 82 - €1; but this quantity is both real and infinitesimal, so it

must be zero.

For the existence, let a = sup {beR: b < x}; since x is
finite, a exists. I must show that x-a is infinitesimal. Assume not,
then there is a real number r such that 0 < r <|x-a| (absolute values in
*R are defined exactly as absolute values in R). If x-a > 0, this implies
that a+r < x, contradicting the choice of a. If x-a <0, I get Xx < a-r,

also contradicting the choice of a.«

Let us write x ® y to mean X and y are infinitely close; i.e.

x-y is infinitesimal.

1.1.7 Definition
For each finite x € *R, the unique real number a such that
Xx % a is called the standard part of x and is denoted by °x or st(x).
Conversely, for each a € R, the set of all x € *R such that a = °x is

called the monad of a.

The next lemma shows that there is a reasonable relationship

between the asymptotic behaviour of (an} and the value of <an>.

1.1.8 Lemma

I1f the sequence (an) has limit a, then a = <an>.
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I.1. CONSTRUCTION OF *R 9

Proof. All we have to show is that a-g < <an> < a+e for any given
€ € IR+. But since (an} converges to a, the set {n: a-& < an < a+g}

contains all but a finite number of n's and hence has measure one.<«

Let me briefly summarise the contents of this section. We
have constructed a set *R of nonstandard reals or hyperreals which is an
ordered field extension of R and contains infinitely small and infinitely
large numbers. A simple but useful picture to have in mind is the one

shown in Figure 2; it depicts *R as an ordered structure consisting

infinite finite X=a+€ infinite *R
< -- > - - € ' D - - € ceeed>
negative numbers numbers I positive numbers

standard part map

i S

< $ Do

a=st(x)=°x

Figure 2

of three parts; the infinite negative numbers, the finite numbers, and the
infinite positive numbers. According to Proposition I.1.6, the finite
part looks exactly like R except that each point in R has been blown up to
become a copy of the set of infinitesimals.

Although the constructions of R and *R are so very similar,
there is an important difference between the two sets; the dependence on
the measure m makes *R "less canonical" than R. Indeed, if you look back
at Example 1.1.1, you will see that in *R one of the two sequences
{0,1,0,1,0,...}, {1,0,1,0,1,...} is identified with 0 and the other one
with 1; and which is which depends on the measure m. If we stick to our
philosophy above and consider R and *R as structures constructed to
reflect the asymptotic behaviour of sequences, this 1is not too
disconcerting; the difference between the two sets is just that in
creating R from the rational Cauchy-sequences we throw out the sequences

that do not have a decent asymptotic behaviour at the very beginning,
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10 LINDSTROM: 1. A SET OF HYPERREALS

while in creating *R we keep them and treat them in an arbitrary but
coherent way instead. Mathematically, this point of view is supported by
the fact that hyperreals arising from different measures m have the same
interesting analytic properties (although they can only be shown to be
isomorphic under extra set-theoretic assumptions such as the continuum
hypothesis). In Chapter III, I will show that there is occasionally a

need for richer sets of hyperreals constructed not from the set of all

N A
sequences R but from a larger set R , where A is uncountable, and I will

continue the present discussion then.

I.2 INTERNAL SETS AND FUNCTIONS
One of the first things you do when you have introduced a new
mathematical structure is to look for the classes of "nice" subsets and
functions (such as open sets and continuous functions in topology,
measurable sets and functions in measure theory). In nonstandard analysis
the "nice" sets and functions are called internal, and they arise in the

following way.

1.2.1 Definition

(a) A sequence {An} of subsets of R defines a subset <An> of

*R by
<xn> € <An> iff m{n: xn € An} =1,

and a subset of *R which can be obtained in this way is called internal.
(b) A sequence {fn} of functions fn: R » R defines a function
<fn): *R » *R by
<fn>((xn>) = <fn(xn)>,

and any function on *R which can be obtained in this way is called

internal .

1.2.2 Example

(a) If a = (an> and b = (bn> are two elements of *R, then the

interval [a,b] = {xe*R: a < x < b} is internal as it is obtained as
<[an,bn]>.

(b) If ¢ = <cn> is in *R, the function sin(cx) is an internal

function defined by sin(cx) = <sin(cnxn)>.
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