Already published

1 W.M.L. Holcombe *Algebraic automata theory*
2 Karl Petersen *Ergodic theory*
3 Peter T. Johnstone *Stone spaces*
4 W.H. Schikhof *Ultrametric calculus*
5 J-P. Kahane *Some random series of functions*
6 H. Cohn *Introduction to the construction of class fields*
7 J. Lambek and P.J. Scott *Introduction to higher order categorical logic*
8 H. Matsumura *Commutative ring theory*
9 C.B. Thomas *Characteristic classes and the cohomology of finite groups*
10 M. Aschbacher *Finite group theory*
11 J.L. Alperin *Local representation theory*
12 Paul Koosis *The logarithmic integral: I*
Introduction to

higher order categorical logic

J. LAMBEK
McGill University

P. J. SCOTT
University of Ottawa
Contents

Preface

Part 0 Introduction to category theory
 Introduction to Part 0 3
 1 Categories and functors 4
 2 Natural transformations 8
 3 Adjoint functors 12
 4 Equivalence of categories 16
 5 Limits in categories 19
 6 Triples 27
 7 Examples of cartesian closed categories 35

Part I Cartesian closed categories and λ-calculus
 Introduction to Part I 41
 Historical perspective on Part I 42
 1 Propositional calculus as a deductive system 47
 2 The deduction theorem 50
 3 Cartesian closed categories equationally presented 52
 4 Free cartesian closed categories generated by graphs 55
 5 Polynomial categories 57
 6 Functional completeness of cartesian closed categories 59
 7 Polynomials and Kleisli categories 62
 8 Cartesian closed categories with coproducts 65
 9 Natural numbers objects in cartesian closed categories 68
 10 Typed λ-calculi 72
 11 The cartesian closed category generated by a typed λ-calculus 77
 12 The decision problem for equality 81
 13 The Church–Rosser theorem for bounded terms 84
 14 All terms are bounded 88
 15 C-monoids 93
 16 C-monoids and cartesian closed categories 98
 17 C-monoids and untyped λ-calculus 101
 18 A construction by Dana Scott 107
 Historical comments on Part I 114
Contents

Part II Type theory and toposes

Introduction to Part II 123
Historical perspective on Part II 124
1 Intuitionistic type theory 128
2 Type theory based on equality 133
3 The internal language of a topos 139
4 Peano’s rules in a topos 145
5 The internal language at work 148
6 The internal language at work II 153
7 Choice and the Boolean axiom 160
8 Topos semantics 164
9 Topos semantics in functor categories 169
10 Sheaf categories and their semantics 177
11 Three categories associated with a type theory 186
12 The topos generated by a type theory 189
13 The topos generated by the internal language 193
14 The internal language of the topos generated 196
15 Toposes with canonical subobjects 200
16 Applications of the adjoint functors between toposes and type theories 205
17 Completeness of higher order logic with choice rule 212
18 Sheaf representation of toposes 217
19 Completeness without assuming the rule of choice 223
20 Some basic intuitionistic principles 226
21 Further intuitionistic principles 231
22 The Freyd cover of a topos 237
 Historical comments on Part II 244
 Supplement to Section 17 250

Part III Representing numerical functions in various categories

Introduction to Part III 253
1 Recursive functions 253
2 Representing numerical functions in cartesian closed categories 257
3 Representing numerical functions in toposes 264
4 Representing numerical functions in C-monoids 271
 Historical comments on Part III 277

Bibliography 279
Author index 289
Subject index 291
Preface

This book makes an effort to reconcile two different attempts to come to grips with the foundations of mathematics. One is mathematical logic, which traditionally consists of proof theory, model theory and the theory of recursive functions; the other is category theory. It has been our experience that, when lecturing on the applications of logic to category theory, we met with approval from logicians and with disapproval from category theorists, while the opposite was the case when we mentioned applications of category theory to logic. Unfortunately, to show that the logicians’ viewpoint is essentially equivalent to the category theorists’ one, we have to slightly distort both. For example, category theorists may be unhappy when we treat categories as special kinds of deductive systems and logicians may be unhappy when we insist that deductive systems need not be freely generated from axioms and rules of inference. The situation becomes even worse when we take the point of view of universal algebra. For example, combinatory logics are for us certain kinds of algebras, which goes against the grain for those logicians who have spent a lifetime studying what we call the free such algebra. On the other hand, cartesian closed categories and even toposes are for us also certain kinds of algebras, although not over sets but over graphs, and this goes against the grain of those category theorists who like to think of products and the like as being given only up to isomorphism. To make matters worse, universal algebraists may not be happy when we stress the logical or the categorical aspects, and even graph theorists may feel offended because we have had to choose a definition of graph which is by no means standard.

This is not the first book on categorical logic, as there already exists a classical monograph on first order categorical logic by Makkai and Reyes, not to mention a book on toposes written by a category (Johnstone) and a book on topoi written by a logician (Goldblatt), both of whom mention the internal language of toposes*. Our point is rather this: logicians have made

* Let us also draw attention to the important recent book by Barr and Wells, which manages to cover an amazing amount of material without explicit use of logical tools, relying on embedding theorems instead.
Preface

three attempts to formulate higher order logic, in increasing power: typed λ-calculus, Martin–Löf type theory and the usual (let us say intuitionistic) type theory. Categorists quite independently, though later, have developed cartesian closed categories, locally cartesian closed categories and toposes. We claim here that typed λ-calculi and cartesian closed categories are essentially the same, in the sense that there is an equivalence of categories (even untyped λ-calculi are essentially the same as certain algebras we call C-monoids). All this will be found in Part I. We also claim that intuitionistic type theories and toposes are closely related, in as much as there is a pair of adjoint functors between their respective categories. This is worked out in Part II. The relationship between Martin–Löf type theories and locally cartesian closed categories was established too recently (by Robert Seely) to be treated here. Logicians will find applications of proof theory in Part I, while many possible applications of proof theory in Part II have been replaced by categorical techniques. They will find some mention of model theory in Part I and more in Part II, but with emphasis on a categorical presentation: models are functors. All discussion of recursive functions is relegated to Part III.

We deliberately excluded certain topics from consideration, such as geometric logic and geometric morphisms. There are other topics which we omitted with some regret, because of limitations of time and space. These include the results of Robert Seely already mentioned, Gödel’s Dialectica interpretation (1958), which greatly influenced much of this book, the relation between Gödel’s double negation translation and double negation sheaves noted by Peter Freyd, Joyal’s proof of Brouwer’s principle that arrows from \mathbb{R} to \mathbb{R} in the free topos necessarily represent continuous functions (and related results), the proof that \mathcal{N} is projective in the free topos and the important work on graphical algebras by Burroni.

Of course, like other authors, we have some axes to grind. Aside from what some people may consider to be undue emphasis on category theory, logic, universal algebra or graph theory, we stress the following views:

- We decry overzealous applications of Occam’s razor.
- We believe that type theory is the proper foundation for mathematics.
- We believe that the free topos, constructed linguistically but determined uniquely (up to isomorphism) by its universal property, is an acceptable universe of mathematics for a moderate intuitionist and, therefore, that Platonism, formalism and intuitionism are reconcilable philosophies of mathematics.
Preface

This may be the place for discussing very briefly who did what. Many results in categorical logic were in the air and were discovered by a number of people simultaneously. Many results were discussed at the Séminaire Bénabou in Paris and published only in preprint form if at all. (Since we are referring to a number of preprints in our bibliography, we should point out that preliminary versions of portions of this book had also been circulated in preprint form, namely Part I in 1982, Part II in 1983 and Part 0 in 1983.) If we are allowed to say to whom we owe the principal ideas exposed in this monograph, we single out Bill Lawvere, Peter Freyd, André Joyal and Dana Scott, and hope that no one whose name has been omitted will be offended.

Let us also take this opportunity to thank all those who have provided us with some feedback on preliminary versions of Parts 0 and I. Again, hoping not to give offence to others, we single out for special thanks (in alphabetic order) Alan Adamson, Bill Anglin, John Gray, Bill Hatcher, Denis Higgs, Bill Lawvere, Fred Linton, Adam Obułowicz and Birge Zimmermann-Huysgen. We also thank Peter Johnstone for his astute comments on our seminar presentation of Part II. Of course, we take full responsibility for all errors and oversights that still remain.

Finally let us thank Marcia Rodriguez for her conscientious handling of the bibliography, Pat Ferguson for her excellent and patient typing of successive versions of our manuscript and David Tranah for initiating the whole project.

The authors wish to acknowledge support from the Natural Sciences and Engineering Research Council of Canada and the Quebec Department of Education.

Montreal, July, 1984

This reprint differs from the original only in the correction of some typographical errors.

July 1987

In this reprinting we have repaired various minor misprints and errata. We especially thank Johan van Benthem, Kosta Došen, and Makoto Tatsuta for their careful reading of the text.

Since this book was first published, there has been a tremendous increase of interest in categorical logic among theoretical computer scientists. Of particular importance has been the development of higher-order (= polymorphic) lambda calculi (see Girard’s thesis). In the terminology of Part I of this book, such calculi correspond to the
Preface

The equational treatment of weak natural numbers objects in Part I has been extended to strong natural numbers objects (see J. Lambek, *Springer LNM* 1348 (1988) 221–229).