
Elastic mechanisms in animal movement

Elastic mechanisms in

animal movement

R. McNEILL ALEXANDER *Professor of Zoology, University of Leeds*

CAMBRIDGE UNIVERSITY PRESS Cambridge New York New Rochelle Melbourne Sydney CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Tokyo, Mexico City

Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9780521349680

© Cambridge University Press 1988

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 1988 Re-issued 2013

A catalogue record for this publication is available from the British Library

Library of Congress cataloguing in publication data
Alexander, R. McNeill.
Elastic mechanisms in animal movement/R. McNeill Alexander,
p. cm.
Bibliography: p.
Includes index..
ISBN 0 521 34160 4.
I. Animal mechanisms. 2. Elasticity. 3. Animal locomotion.
4. Physiology, Comparative. I. Title.
QP303.A573 1988 87–25661 CIP
591.1'852–dc19

1SBN 978-0-521-34160-8 Hardback 1SBN 978-0-521-34968-0 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. Information regarding prices, travel timetables, and other factual information given in this work is correct at the time of first printing but Cambridge University Press does not guarantee the accuracy of such information thereafter.

Contents

	Preface	vii
1	Elastic materials	1
1.1	Definitions	1
1.2	Ligamentum nuchae: properties	5
1.3	Tendon	7
1.4	Mesogloea	10
1.5	Molecular mechanisms	12
1.6	Filled polymers and fibres	16
1.7	Muscle	17
2	Springs as muscle antagonists	22
2.1	Bivalve shells	22
2.2	Ligamentum nuchae: function	25
2.3	Sea anemones	27
3	Springs as energy stores: running	30
3.1	The bouncing ball principle	30
3.2	Energy fluctuations in human running	34
3.3	Kangaroos	35
3.4	Mathematical models	39
3.5	The arch of the foot	42
3.6	Hoofed mammals	45
3.7	Galloping	47
4	Springs as energy stores: swimming and flight	51
4.1	Principles	51
4.2	Hovering insects	56

vi Contents

4.3	e	61
4.4		65
4.5		69
4.6	Whales	70
5	Fibre-wound animals	72
5.1	Helical fibres	72
5.2	A worm-like model	74
5.3	Fishes and whales	78
6	Springs as catapults	81
6.1	Catapults and jumping	81
6.2	Locusts' jumping	83
6.3	Heavy feet	87
6.4	Click beetles	88
7	Suspension springs and shock absorbers	91
7.1	Suspension systems	91
7.2	Loads on the head	95
7.3	Paw pads	9 8
7.4	Vibrations in the human skeleton	104
7.5	Breathing while running	106
8	Springs and control	110
9	Springs and size	116
9.1	Elastic similarity	116
9.2	Dynamic similarity	121
9.3	Compromises	125
9.4	Flight	128
	References	130
	Index	138

Preface

Springs are useful for many purposes: you can fix a spring on a door, to close it; you can bounce along on the spring of a pogo stick; you can use springs to make a catapult, or the suspension system of a car. Animals exploit the elastic properties of parts of their bodies in ways like these, and in other ways. They use elastic mechanisms in running, jumping, flight, swimming, breathing and in controlling their hands. The study of elastic mechanisms has been a dominant theme in biomechanics at least since the discovery of the protein resilin in 1960 by the late Torkel Weis-Fogh. It has been a remarkably fruitful field of enquiry. We have learned a great deal about animals (including people) and we have had a lot of fun.

This seems to be the first book about elastic mechanisms in animals. I have written it mainly for university students and research workers in biology, but I hope that other people will read it too. They will need some basic understanding of biology, physics and mathematics. I have tried to keep the mathematics simple, and I have avoided skipping 'obvious' steps in the argument. There are a lot of equations, but I think you will find that each leads easily to the next.

I have not tried to include every investigation of elastic mechanisms in animals. Instead, I have selected subjects for their interest and variety, and for their significance for our understanding of animal lives and movements.

R. McNeill Alexander