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1

Cavalieri principle and
other prerequisites

The aim of this chapter is to present some basic mathematical tools on which
many constructions in the subsequent chapters depend.

Thus we will often refer to what we call the ‘Cavalieri principle’. We try to
revive this old familiar name because of the surprising frequency with which
the transformations Cavalieri considered about 350 years ago occur in integral
geometry.

No less useful will be the principles which we call ‘Lebesgue factorization’
and ‘Haar factorization’. The first is a rather simple corollary of a well-known
fact that in R" there is only one (up to a constant factor) locally-finite measure
which is invariant with respect to shifts of R", namely the Lebesgue measure.
Haar factorization is a similar corollary of a much more general theorem of
uniqueness of Haar measures on topological groups. We use the two devices
in the construction of Haar measures on groups starting from Haar measures
on subgroups.

Integral geometry binds together such notions as metrics, convexity and
measures, and these interconnections remain significant throughout the book;
§§1.7 and 1.8 are introductory to this topic.

1.1 The Cavalieri principle

The classical Cavalieri principle in two dimensions can be formulated as
follows.
Let D, and D, be two domains in a plane (see fig. 1.1.1).

If for each value of y the length of the chords X, and X, coincide, then the
areas of D, and D, are equal.

The proof of this beautiful geometrical proposition follows from the repre-
sentation of the area of D,, i = 1, 2, by the integral
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A
=

Figure 1.1.1 X, is the intersection of D; with the horizontal line on the level y

JX,. dy.

Pairs of domains having the above property arise whenever we consider
transformations of the plane of the type

x; =x+ a(y)

V=5
which are clearly area-preserving. To these transformations the following
interpretation can be given.
We consider the plane as composed of ‘rigid’ horizontal lines. The
transformation

(X, ,V) - (x1’ ,V1)
rigidly shifts each horizontal line along itself (although the shifts can be
different for different lines). The domain D, in the above example can be
considered to be the image of D; under some transformation of this type. We
call this a Cavalieri transformation. Measures in R? which remain invariant
with respect to Cavalieri transformations are numerous. For instance, mea-
sures given by the densities of the form

S(y)dxdy

are all invariant as shown by the identity

JL f(y)dxdy = Jf(y)xl(y) dy = JL f(y)dx dy, (1.L.1)

where D, and D, are as in fig. 1.1.1. Similarly (Fubini theorem) it can be shown
that any product measure
m x Ly,
where L, is the Lebesgue measure on the Ox axis and m is any measure on the
Oy axis, is invariant with respect to Cavalieri transformations of R2.
In the sequel similar transformations of other product spaces will occur.
The typical situation here will be as follows.
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Let the basic space X be a product of two spaces
X=Y xRt (xeX,yeVY,ZeR"
(the second factor is k-dimensional Euclidean).
Assume that a transformation of the space X has two properties:
(a) it sends each generator, i.e. the set
y x R* = {(y, #): y is constant, 2 changes in R*},
into the same generator;

(b) it preserves the distances between the points of a generator (i.e. the
generators are ‘rigid’).

Such transformations we again call Cavalieri. The Cavalieri principle in this
situation is as follows.

Every product measure m x L,, where L, is the Lebesgue measure on R*
and m is any measure on Y, is invariant with respect to Cavalieri transfor-
mations of X.

In the spaces of importance described in chapter 2 we actually have natural
groups of Cavalieri transformations.

1.2 Lebesgue factorization
We consider a product of two spaces
X =Y x R¥

where R* is k-dimensional Euclidean space, while the space Y here remains
unspecified (any separable metric space will suffice).

Let T, be the group of translations of R¥. We define the action of a transla-
tion t € T, on the space X as follows.

For (y, #), where y e Y, 2 € R, we put

ty, 2) =y 12)

(this means that ¢ is y-preserving).

A measure u on X is called invariant with respect to T, (or simply T,-
invariant) if for every t € T, and C € X we have

u(tC) = u(C), where C = {t(y, #):(y, ?) e C}. (1.2.1)
To check (1.2.1) it is enough to consider the product sets, i.e. to take
C=AxB, AcY, BcR
in which case (1.2.1) reduces to
p(t(A x B)) = u(4 x tB) = (A x B),
where tB denotes the translation of B by t:
tB={t?:% € B}.
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As usual, measures which are finite on compact sets we call locally-finite.
We say that a measure m on X has a locally-finite projection on R, if for every
compact B — R* we have

m(Y x B) < co.

The Lebesgue factorization principle states that:

Any locally-finite and T,-invariant measure g on X = Y x R* is necessarily
a product measure:
u=mx Lka
where L, is Lebesgue measure on R* and m is a locally-finite measure on Y.
If additionally m has a locally-finite projection on R, then

u=A41Px1L,

where 4 = 0 is a constant and P is a probability measure on Y, i.e. P(Y) = 1.

Proof Let us fix a set A, = Y which has compact closure and let us regard
u(Ay x B) as a set function depending on B. It follows from the properties of
u that this is a measure on Y which is translation-invariant and locally-finite.
It is known from analysis that any such measure is proportional to Lebesgue
measure, i.c.

1(Ao % B) = m(Ay)" Ly(B).
So far m(A,) has been some constant which does not depend on B, but may
depend on our choice of 4,.

Now we fix a set B, = R* which has compact closure and consider

#(A x By) = m(A)" Li(B,)
as a function of A. Clearly u(A4 x By) is a measure on Y. This implies that m
is a locally-finite measure on Y. This proves the first assertion. In the case
where u has a locally-finite projection on R¥, we have

(Y x By) = m(Y)" Li(B,) < o0;
1e.
m(Y) < oo.
We get the second assertion when we put (assuming 4 > 0)
A=mY), P=i1!m

In the factorization table 2.8.1 we give several important examples where
Lebesgue factorization is directly applied.

We mention, however, that the factorizations of table 2.9.1 are valid under
quite different conditions: in the corresponding spaces the group of shifts no
longer transforms product sets into product sets.

Remark on terminology In this book we consider only locally-finite measures.
However, in the text we often omit the adjective ‘locally-finite’. Thus a ‘mea-
sure’ will always mean a ‘locally-finite measure’.
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1.3 Haar factorization
The main idea of Lebesgue factorization can be extended to product spaces
where one of the space factors is a group.

For a broad class of locally-compact topological groups (an exact account
of the theory can be found in [4]) an important theorem is valid which
establishes existence and uniqueness (up to a constant factor) of the so-called
left-invariant and right-invariant Haar measures. In general the two measures
need not be proportional. When they are, we have the bi-invariant Haar
measure (which is again defined up to a constant factor).

We will always tacitly assume that our groups belong to the class mentioned
above, as do all the concrete groups we consider in this book.

Let U be a group. A non-zero measure hon U is called left-invariant Haar if

h(uA) = h(A) (1.3.1)
for arbitrary u € U and 4 = U. Here
uA = {uu, :u, € A},
where uu, denotes group multiplication.
A non-zero measure 4 is called right-invariant Haar if
h(Au) = h(A4) (1.3.2)
forany A < U and u € U. Here
Au= {uu:u € A}.
We will use the notation h{}, h{) and hy,, respectively, for left-, right- and bi-
invariant measures on U.

By essentially repeating the proof of the previous section we can extend its

result to product spaces

X=Y x U,
where the factor U is a group (it replaces R¥), Y again is a separable metric
space.

Any measure u on X which is invariant with respect to the transformations
ul(y, u) = (y’ ulu)
necessarily factorizes:
p=mx h), (1.3.3)

where m is some measure on Y.

If we use right-multiplication, i.e.

ul(y5 u) = (y’ uul)’
then the right-invariant Haar measure h{) will appear in (1.3.3). Below we will
refer to these factorizations as ‘Haar factorizations’

Remark In chapters 8 and 9 (in the point processes context) we apply the
above proposition in the situation in which Y is the space of ‘realizations’.



6 1 Cavalieri principle and other prerequisites

There we gloss over the question of introducing the metric on such Y. (This
work has been carried out in detail in [18].)

In some cases we can apply Haar factorization to find Haar measures
explicitly, as well as to obtain the criteria of existence of bi-invariant Haar
measures (i.e. measures which satisfy both (1.3.1) and (1.3.2)).

Let X be a (non-commutative) group, and let U and V be two subgroups
of X. Assume that each x € X admits both representations

x=uv, wel, eV
(1.3.4)
x=nu, uel, veV
and that each of these representations is unique. (The letters ‘I and ‘I’ in the
subscripts stand for ‘left’ and ‘right’.)

According to (1.3.4) the set-theoretical product U x V can be mapped on

X in two ways:
fiiw,v)>uw
foi(u,v) > vu
and these maps are one-to-one. In other words, the product U x V can be
used as a model for X in two different ways:
(ul’ vr) = fl_l(x)
(un 1)1) = fz_l(x)’
where ™! denotes the inverse of f.
Now

(1.3.5)

S ux) = (uuy, v,), uel,
Tox) = (u,, vvy), veV.
Therefore the left-invariant Haar measure hY) necessarily admits two Haar
factorizations, namely
WY LAY m,
WY & m, x Y,
where m, and m, are some measures on V and U, respectively. The symbol
L denotes the image of the measure under the map f.
There are similar equations for the right-invariant Haar measure on X:
K Loy x K
hQ Loy x m5,
where m} and m, are some measures on U and V, respectively.
In the cases where the Haar measures on the subgroups U and V are known,
the partial information given by these equations can be used for the purpose
of finding Haar measures on X. Some examples are given in chapter 4.

The maps f; and f, can be used to formulate a necessary and sufficient
condition of bi-invariance of hx. By repeated application of Haar factorization

(1.3.6)

(1.3.7)
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we conclude that any measure on X which is invariant with respect to the
transformation

X — uxv
is necessarily the image under f; of the measure

c h{) x b,
where c is a constant. Similarly, any measure on X which is invariant with
respect to the transformations

X = UXU

1s necessarily the image of the measure
c hQ) x by
(perhaps with a different constant) under f,. These images can be substantially
different. But let us assume that both images are proportional to a measure h
on X. For any A « X we will have
h(uyv, Au,v,) = h(v, Au,) = h(A).
Since both u,v; and u, v, represent general elements from X, this is essentially

the condition defining the bi-invariant Haar measure on X. We have come to
the following resulit.

On U x V we consider two measures:
K x B and A x h{).
Their respective images under f; and f, are proportional if and only if there

exists a (unique) bi-invariant measure hyx on X, hy being proportional to the
above-mentioned image measures.

The practical application of this criterion can be as follows. Each of the pairs
(u,, v,) or (u,, ) can serve as coordinates on the group X. We express u; and
u, in terms of u, and v, (both pairs of variables correspond to the same x as in
(1.3.4))

u = (U, 1),
U = (p2(ur’ Ul)'

We can assume that f] is trivial, i.e.

(1.3.8)

(w, ) = x.

Then f,! is given by (1.3.8). Now application of the above criterion reduces
to the usual Jacobian calculation, i.e. to a check that the transformation (1.3.8)
maps h) x h) into c-h{} x h). In all the cases we consider in this book,
bi-invariance of hy implies that the constant c equals one. The typical situation
will be as follows.

The elements u € U and v € V will depend on a finite number of parameters.
Therefore ¢ will equal the absolute value of the determinant of a matrix which
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we briefly denote by

01 09y
ou ov
Cc = .
00; 092
ou Ov

Since ¢ is a constant it is enough to calculate the value of this Jacobian at the
points

u = 1y (the unit element of U)

and
v =1y (the unit element of V).
We have
09y (u, v) 09, (u, v) 00:(u, 1y) do,(1y, v)
ou ov ou ov
99, (u, v)  09y(u, v) 09,(u, 1y)  0g,(1y, v)
Ju ov =1y, u v u=1y,
v=1y, v=ly

Because U and V will always be groups of transformations of the same space,
from (1.3.4) we find

(pl(u’ 1\/) =u, (pl(llU’ l?) = 1[Ua

o2, ly) =1y, @1y, v) =w.
We obtain the determinant of the unit matrix, i.e. ¢ = 1.

In the chapters that follow we often apply ‘differential’ notation for Haar
measures according to table 1.3.1. Similar notation for uniquely determined
invariant measures are also applied in other spaces; for instance, if & is the
generic notation for a point in R” then d2 will denote Lebesgue measure in R".

Also we use lower indexation as in (1.3.4) to avoid explicit mention of the
maps f,, f>. Thus, dPy, d®v, will denote a measure on X which is the image
of the product measure d% dv on U x V under the map f;. Similarly
dWyu_dy, will denote the image of d”u d®v (another measure on U x V)
under f,. Our result for bi-invariant measures now becomes

dx = dWu, dy, = d®y, dVp,. (1.3.9)

This corresponds to writing a measure in terms of coordinates.

Table 1.3.1

Group Element Bi-invariant Haar Left-invariant Haar Right-invariant Haar

X xeX dx d¥x d®x
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Remark Insome cases (especially in chapter 3) we use notation like d/, dV etc.
to denote infinitesimal lengths, volumes etc. The exact meaning of the notation
will always be clear from the context.

1.4 Further remarks on measures

I One of the principles of the general theory of Haar measures is that on
compact groups Haar measures are both finite and bi-invariant. The unique-
ness up to a constant factor of course follows from the general statement quoted
in §1.3. The above principle can be useful in concrete situations whenever we
can point out a finite left-invariant (say) Haar measure h, (as we do in the case
say, of a rotation group in §3.2). Then we automatically conclude bi-invariance
and essential uniqueness of h,. Now we show that the bi-invariance property
of a finite left-invariant h, can be demonstrated effortlessly.

Suppose h, is a left-invariant Haar measure on a (compact) group U.
We take hy(U) = 1 for convenience. Consider the right-transformed measure
h(A) = ho(Au), A < U, for a fixed u e U. This is still a left-invariant Haar
measure and obviously

h(U) = hoy(Uu) = hy(U) = 1.
We argue by the uniqueness of left-invariant measures that
h = ho.

This holds for all u € U and so h, is also a right-invariant Haar.

IT In chapter 4 we will use the Haar measure on the multiplicative group of
positive numbers. We now denote this group by X, x e X.
The map
y=Inx
isomorphically transforms X into T,. Therefore the Haar measure on X is
necessarily the image of the Haar (Lebesgue) measure on T, under the map

x =¢e’.
We have
d
dy = ia
X

thus the measure dx/x is the (unique) bi-invariant Haar measure on X. We also
call it the ‘logarithmic measure’.

The following precise result often hides behind the name of ‘homothety
consideration’; it will be of use in chapter 4.

Let m be a locally-finite measure on (0, co) for which always
m(hB) = h*m(B),
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where B denotes the image of Borel B under a homothety 4 (alternatively h
is the corresponding rescaling factor). Then necessarily m has a density pro-
portional to x*~! dx.

Proof the measure x *m(dx) is invariant with respect to homotheties and is
therefore proportional to the logarithmic measure.

IIT In line with our concern with the question of uniqueness lies the following
proposition.
Let us assume that a measure m which is defined on a product of two spaces

Y x Z
has two product representations:
m=m; xm
and
m=m, x m',
where m; and m, are measures on Y and m’ is a measure on Z. If there is a set
Ay < Z for which

0<m(4,) < 0

then the measures m, and m, are identical.

Proof For any B < Y we have
m(B x A,) = m(B)-m'(A,) = my(B)-m'(A,).
Therefore
m,(B) = m,(B).
We call the above the ‘elimination of a measure factor’ and use it several times
in chapters 2—4.

1.5 Some topological remarks
I A number of spaces of integral geometry belong to the class of so-called
fibered spaces which generalize the notion of product spaces. A space X is
referred to as fibered when there is a map
n:X->Y
(the projection of X into a space Y) such that each fiber

{x:n(x) =y}
is homeomorphic to a space Z (the fiber model) which does not depend on y.
Note that in §1.1, where X = Y x Z, the fibers are called generators. We now
give an example of a fibered space which we use in §2.5.
We take the unit sphere S, in R3. At each point w € S, we construct the
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tangent plane t(w). Let X, be the set of pairs
(w, ) where always 2 e t{w).

We endow X, with a topology in the following way: by definition, a sequence
{(w,, #,)} converges to a point (w, 2) if and only if

(1) w, converges to w in the usual topology on S,;
(2) 2, converges to 2 in the topology of R3,

The space X, thus obtained is called the tangent bundle of S,; it is topologi-
cally different from the product S, x R? (see [56]). The fact that it is impos-
sible to choose coordinate systems for each tangent plane so that they vary
continuously over all of the unit sphere is a simple example of the famous
topological phenomenon concerning the non-existence of non-zero continuous
tangent vector-fields on spheres.

Our X, is a fibered space with

n(w, #)=w
and we consider the fibers (tangent planes) as Euclidean replicas of R? (i.e. we
can consider congruent figures on different tangent planes).

Let us consider the planar Lebesgue measure L, on each t(w). We assume
that L, is independent of w in the sense that congruent domains on different
tangent planes have equal L,-measures. With every measure mon S, we now
associate a measure g on X, by the formula

w(A4) = sz(Aw)M(dw), (1.5.1)

where A, = A nt(w) is the trace of 4 on t(w). We call u a composition of
Lebesgue measures on fibers.
We call transformation a of X; Cavalieri if

(1) a maps a fiber into a fiber;
(2) the image of L, on each fiber is again L, (on another fiber);
(3) ainduces a map Y — Y of fibers which preserve m.

The non-product topology on X, does not restrict the use of a type of Cavalieri
principle:

On X, any composition of Lebesgue measures is invariant under a Cavalieri
transformation.

The proof is almost tautological.

Similar Cavalieri principles also hold for other fibered spaces in this book.
We stress that in all cases the measures on fibers we compose are invariant
with respect to the choice of coordinates on the fibers. As a result, their
composition is uniquely determined by the measure in the space of fibers. We
had this advantage in the above example.
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II The remark made at the end of I concerns the different spaces of figures we
consider in this book (such as spaces of lines, planes etc.). There is a general
principle which governs our choice of topologies in these spaces:

They comply with the topology in the space F of closed sets.

By this we mean the following.

Let X be the basic space where our figures belong (in the case of figures
which are lines, X = R? or R?). By F we now denote closed sets in X : F € F.
By definition, a sequence F, converges in F if and only if it satisfies the two
conditions:

(1) ifan open set G hits F (.. if G » F % () then G hits all the F, except, at
most, a finite number of them;

(2) if a compact K is disjoint of F, it is disjoint of all the F, except, at most,
of a finite number of them.

This convergence notion defines the topology on F (see [1]).

In many cases our figures can be considered as closed sets in X. Then, each
time, the topology on F induces a topology in the space of figures in question:
a set A is declared open if A is an intersection of an open set in [ with the total
set of figures.

The compliance means that we will be considering homeomorphic models
of the spaces of figures where the topology is induced by F in the above sense.

III An adequate description of a number of spaces of integral geometry
requires the notion of elliptical (projective) space. We denote n-dimensional
elliptical space by E,. A model of this space can be obtained from the unit
n-dimensional sphere S, by ‘gluing together’ every two points of S, which
are symmetrical (antipodal). In other words each pair of antipodal points on
S, is considered to be a single point of the space E,. Equivalently, we can take
a closed half of S, (a closed hemisphere) and ‘glue together’ the points on the
boundary which are opposite to each other. Fig. 1.5.1 illustrates the latter

Figure 1.5.1
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operation on the example of the construction of E, from a two-dimensional
hemisphere. The diagram shows the neighborhoods of the points on our
model: the neighborhood of point 1 consists of two semicircular parts; the
neighbourhood of point 2 is shown as a circle.

Consider that part of our model which is obtained by cutting off the two
closed semicircular parts, as shown in fig. 1.5.2. The shaded region is homeo-
morphic to a rectangle with points on a pair of opposite sides glued together,
as shown in fig. 1.5.3. This is the usual construction of an open Mobius band.
The topology of the region that remains does not change when the region of
E, which is removed reduces to a point. Thus the space

E,\ {a point}
is homeomorphic to a Mébius band.

There is a clear one-to-one map between E, and spaces of such figures in
R3 as

(1) diameters of S,;

(2) lines through a point O;

(3) planes through a point O (each plane of this bundle is determined by a
line through O normal to the plane).

The topology of E, complies with the closed sets’ trace topology in these spaces.
Therefore the spaces (1)—(3) are often described simply as E,.
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E, is obtained from [0, ] (closed interval) by ‘gluing together’ its endpoints.
Thus E, is homeomorphic to a circle. It represents both the space of diameters
of S, and the space of lines through O in the plane.

1.6 Parametrization maps
Usual ‘geographical’ coordinates on the sphere S, provide the best known
example of parametrization. Actually we have a map
. S$; -8, x (0, n),
as shown in fig. 1.6.1. The image (v, ®) is defined for all points w € S, except
for the ‘poles’ N and S.
In a typical situation a parametrization map of a space X onto a space Y
will be a homeomorphism between their slitted versions
X\S; > Y\S,, (1.6.1)
where the excluded sets S; and S, will be less than X or Y in dimensionality.
As soon as such a map is specified we will write
X=~Y. (1.6.2)

Let m be a measure on X. The image of m under parametrization (1.6.1) will
provide an adequate description of m whenever

m(S;) = 0. (1.6.3)
Yet in general not every measure m,; on Y for which
m(S,)=0 (1.6.4)

can be considered to be an image of a measure on X (recall that in our usage
measures are necessarily locally-finite).

Clearly the map converse to (1.6.1) can send a non-compact set B < Y into
a subset of a compact set in X. Therefore a measure m; on Y happens to be

The image
of w

Figure 1.6.1 The circumcylinderis S, x (—1, 1)
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an image of a measure on X whenever an additional condition
m,(B) < o« (1.6.5)
is satisfied for every B < Y\ S, with the described property.

Ifboth (1.6.4) and (1.6.5) are satisfied, then m, in a sense represents a measure
on X. Forinstance, the measure on S, x (0, ) given by the density (v)™! dv d®
is locally but not totally finite and fails to represent a measure on S,. The
measure sin v dv d® represents the area measure on S,.

The precautions (1.6.3)—(1.6.5) would be pointless if we could complement
the map (1.6.1) by a one-to-one map between S; and S, with the property that
the one-to-one map between X and Y that arises sends a compact C < X into
a relatively compact set C' = Y and vice versa. Recall that a set is called
relatively compact if it can be covered by a compact set.

If such a map between S, and S, can be established, then each measure on
Y represents a measure on X and vice versa. Such a map turns Y into a
measure-representing model of X. Some examples will be given in chapter 2.

1.7 Metrics and convexity

One of the concerns of contemporary integral geometry is the interrelation
between the notions of metrics, convexity and measures in the spaces of lines
and planes. In this and the next section we outline the simplest facts and leave
more detailed discussion of this topic for chapter 5.

Given a bounded convex domain D = R? we define its breadth function
b(@) to be the distance between the pair of parallel support lines of D which
are orthogonal to the direction ¢ (see fig. 1.7.1; by definition, a support line
has a point in common with J;, but not with the interior of D). In general b(¢)
does not determine a convex D in a unique way; but it does if we additionally
assume that D is centrally-symmetric.

After Minkowski [30] we consider linear continuations b* of the breadth

*T

Figure 1.7.1
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functions. Given a breadth function b(¢) we put

b*(#?) = rb(9),
where (r, @) are the usual polar coordinates of 2 € R? with the origin at the
symmetry center of D. There is a fundamental proposition [14]:

If b(¢p) is a breadth function of a centrally-symmetric bounded convex D — R?
which is not a line segment then

P2y, P;) = NP, — Py)

is a metric in R2. If D is a line segment then p is a pseudometric.

(In this case
b(p) = 1-|cos(p — a),
where ] is the length and « is the direction of the segment.)
We recall that a metric in R” is a non-negative symmetrical function
PPy, £,), #,, #, € R", which satisfies the conditions

(@) p(#y, ?,)=0ifand only if Z, = 2,;
(b) p(Zy, P3) < p(Py, P) + p(P,, P3) for every P, P,, Ps.

If p satisfies (b) but p(2;, #,) = 0 does not imply that 22, = 2, then p is called
a pseudometric.

Remarkably the complete Minkowski statement also includes the inversion
of the above.

If for a planar metric p we have

PPy, Py) =Py, P, h(),
where |#,, #,| is the Euclidean distance between 2, and £, and the function
h depends only on the direction ¢ from 2, to 2,, then h(¢p) is the breadth
function of some centrally-symmetrical convex bounded domain in R? which is
not a line segment. Under the same conditions any pseudometric p necessarily
corresponds to a line segment.

Let us turn now to connections of (in general no longer translation-invariant)
pseudometrics with measures in the space G of lines in R2. We describe this
space in §2.2.

Let us denote by 2, |%, the set of lines which separate the points 2, and
#,; and by #,|2?,, 2, we denote the set of lines which separate &, from 2,
and 2;. We have an identity which can be checked directly:

2p,2,2,(9) = 15,2,(9) + 12,2,(9) — I3,2.(9),
where g denotes a line and I, is the indicator function of the set 4. Integration

of the above with respect to any measure m in the space of lines which ascribes
zero to any bundle of lines through a point yields
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2m(P,| Py, Py) = m(P1|P) + m(Py|Ps) — m(P,| D). (1.7.1)
If we restrict ourselves to measures m on G whose values on bundles is zero,
then it is quite straightforward that each function

p(P, o) = m(P,|P,) (1.7.2)
is a linearly-additive continuous pseudometric. In particular the triangle in-
equality property (b) follows from (1.7.1) (where the right-hand side is non-
negative).

Remarkably the following converse statement is also true.

Any pseudometric in R? which is linearly-additive and continuous is gener-
ated via (1.7.2) by some measure in the space of lines, and this measure is
unique.

A complete proof of this statement can be found in [3], where it was derived
within the framework of combinatorial ideas (to be outlined in chapter 5). For
translation-invariant cases a similar partial conclusion can be drawn using the
ideas of §2.11. By Minkowski’s proposition, this means that every planar sym-
metrical bounded convex domain is generated by a translation-invariant
measure in the space G.

Which of the above notions virtually generalize to many dimensions, in
particular to R3?

The significance of the breadth functions b(w) for a complete description of
centrally-symmetrical convex domains survives together with Minkowski’s
propositions. (In R3, b(w) equals the distance between parallel support planes
of a convex D which are orthogonal to the spatial direction @.) Also the prin-
ciple (1.7.2) that measures generate metrics remains true. (In R* we have to
interprete 2,|2, as the set of planes separating 2, from %,; m becomes a
measure in [, the space of planes in R>.)

Yet in R3 the situation with the inversion of the latter principle changes: in
R3 there exist linearly-additive, continuous metrics which do not admit the
representation (1.7.2) with any measure m on E. Accordingly the bounded
symmetrical convex domains (bodies) in R? split into two subclasses: zonoids,
i.e. those which correspond to metrics generated by measures in [E, and those
which do not. (We dwell upon these questions later in §§2.12, 5.10, 6.1 and 6.2.)

Breadth functions are useful in the study of projections of convex bodies on
planes (of course the projections are planar convex domains).

Let Q be the direction normal to the plane on which we project a convex
body D = R3, and let b(w) be the breadth function of D. By <Q) we denote
the circle of directions orthogonal to Q (they lie in the plane of projection).
The breadth function b() of the projection coincides with the restriction of b(w)
to the set {Q). This is clearly demonstrated by fig. 1.7.2.
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Figure 1.7.2

1.8 Versions of Crofton’s theorem

In books on integral geometry (including [1] and [2]) the following problem
is discussed in detail. Given two non-intersecting planar convex domains D,
and D,, find the invariant measure of the set of lines separating D, from D,.
By invariant measure we understand the unique (up to a constant factor)
measure in the space of lines in the plane which is invariant with respect to
Euclidean motions. We discuss this measure in detail in chapter 3, and it
reappears frequently in other chapters.

The solution attributed to Crofton [2] is that the value in question equals ‘the
least length of a closed string drawn round D, and D, and crossing over itself
at a point O, minus the lengths of the perimeters of D, and D,’. (See fig. 1.8.1))

Let us consider a version of this result in which D, and D, are replaced by
line segments.

On the plane we have two line segments, §; and 4,, situated as shown in fig.
1.8.2.

The invariant measure of the lines which hit both §, and §, (or, equiva-
lently, separate s, from s,) equals
[yl + lda| — Isy] — Isa), (1.8.1)
where |d| stands for the length of d.

In fact, versions of these simple results for non-invariant measures in the
space of lines in the plane lie at the source of the theory of combinatorial
integral geometry ([3]).

Although we outline the theory later on (in chapter S), we will need the
following simple fact in chapter 2.

Let us denote by [d] the set of lines which hit the segment 6. Except for the
lines passing through the endpoints of 4, and J, we have (see fig. 1.8.2)



1.8 Versions of Crofton’s theorem 19

<

Figure 1.8.1
d, 51
&) —» l«—3,
T }
d, £

Figure 1.8.2 We denote by d, and d, the diagonals and by s, and s, the sides
of the quadrilateral

21i5500,0(9) = La(9) + L (9) — s () — Iis,i(9)s (18.2)
where g denotes a line and I is the indicator function of the set A. (To get the
proofit is enough to consider four different positions of g). Integration of (1.8.2)
with respect to any measure m in the space of lines (which ascribes zero to any
bundle of lines through a point) yields

2m([6,1n[6,]) = m([d,]) + m([d;]1) — m([s,]) — m([s,]). (1.8.3)
Of course (1.7.1) can be considered as a special case of this relation when 4§,
and &, are situated so as to form two sides of a triangle.



