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INTRODUCTION

Functional analysis is a branch of mathematics which uses the intuitions
and language of geometry in the study of functions. The classes of functions
with the richest geometric structure are called Hilbert spaces, and the
theory of these spaces is the core around which functional analysis has
developed. One can begin the story of this development with Descartes’
idea of algebraicizing geometry. The device of using co-ordinates to turmn
geometric questions into algebraic ones was so successful, for a wide but
limited range of problems, that it dominated the thinking of
mathematicians for well over a century. Only stowly, under the stimulus of
mathematical physics, did the perception dawn that the correspondence
between algebra and geometry could also be made to operate effectively in
the reverse direction. It can be useful to represent a point in space by a triple
of numbers, but it can also be advantageous, in dealing with triples of
numbers, to think of them as the co-ordinates of points in space. This might
be termed the geometrization of algebra: it enables new concepts and
techniques to be derived from our intuition for the space we live in. It is
regrettable that this intuition is limited to three spatial dimensions, but
mathematicians have not allowed this circumstance to prevent them from
using geometric terminology in handling n-tuples of numbers when n > 3.
In the context of R” one routinely speaks of points, spheres, hyperplanes
and subspaces. Though such language comes to seem very natural to us, it
still depends on analogy, and we must have recourse to algebra and
analysis to verify that our analogies are valid and to determine which
analogies are useful.

Once the geometric habit of mind was established in relation to R” it was
natural to extend it to other common objects of mathematics which enjoy a
similar linear structure, such as functions and infinite sequences of real
numbers. This is a bolder leap into the unknown, and we must expect that
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2 An introduction to Hilbert space

our intuition for physical space will prove a shakier guide than it was for R".
Indeed, the task of sorting out the right basic concepts in the geometry of
infinite-dimensional spaces preoccupied leading analysts for some decades
around the turn of the century. Thereafter the geometric viewpoint proved
its worth, and came to provide the backdrop for the greater part of modern
work in differential and integral equations, quantum mechanics and other
disciplines to which mathematics is applied.

The study of differential and integral equations arising in physics was
one of the main impulses to the emergence of functional analysis. A
precursor of the subject can be seen in attempts by several mathematicians
to treat such equations as limits in some sense of finite systems of equations.
This approach had fair success, particularly in the hands of Hilbert, and it
still has plenty of life in the domain of numerical analysis. Suppose, for
example, one wishes to solve the integral equation

1
J K(x, ) f(y)dy=g(x).
[}

Here K and g are known continuous functions on [0, 1] x [0, 1] and [0, 1]
respectively, and one is looking for a continuous solution f. It seems
natural to approximate this system by the finite system

e A\ e
K{=.2)f-=g(=).
)l

i=0,1,...,n— 1. Assuming that this system of n linear equations in the n
unknowns fy,, ..., f,_; . has a unique solution, one might expect that, for
large n, f;, ought to be close to f(j/n), at least under further conditions on
K and g.

Hilbert was by no means the first to use this device. Fourier himself was
led to introduce Fourier series in a rather similar way. In studying the
conduction of heat he encountered the differential equation

o*V oV

e =0

subject to certain boundary conditions. By the method of the separation of
variables he derived the solution

Vix,y)= Y a,e " Dxcos2m— 1)y,

m=1

where the coefficients a,, are determined by the infinite system of linear
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Introduction 3
equations
ac
Ya,=1,
1
Y @2m—1)%a, =0,
1

Y @m - 1)*a, =0,
1

Fourier handled these by taking the first k equations and truncating them
to k terms. This gives a k x k system which has a solution a{®, ... ,a{¥. On
letting k — oo Fourier obtained the desired solution of the infinite system.

Although this trick often worked, it has its dangers. Consider the infinite

system
x1+x2+x3+~"=1,
x2+X3+"'=1,

X3+"'=1,

No choice of the x; will satisfy this system, yet Fourier’s limiting procedure
would yield the apparent solution x; =0 for all j.

By virtue of powerful technique and a perception of what was important,
Hilbert was able to make great contributions using this idea. Nevertheless,
mathematicians came to regard the method as inadequate. It is clumsy and
notationally complicated. The procedure of passage to the limit is difficult,
and, indeed, it has been asserted that Hilbert did not always accomplish it
correctly (see Reid, 1970). He himself did not arrive at the modern
geometric viewpoint: Hilbert never used ‘Hilbert space’. It was other
mathematicians, particularly Erhardt Schmidt and Frigyes Riesz, who
reflected on his results'and discovered the right conceptual framework for
them. Thereby they created a simpler, more elegant and more powerful
theory. In this one does not try to reduce essentially infinite-dimensional
questions to finite-dimensional geometry and then ‘let n — «¢’: instead one
develops the geometry of the objects of analysis as they naturally occur,
using the familiar finite-dimensional geometry rather as a guide and
analogy.
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1

Inner product spaces

Some important metric notions such as length, angle and the energy of
physical systems can be expressed in terms of the inner product (x,y) of
vectors x, yeC". This is defined by

(X,,V)=__z xi)-)i’ (Il)

where x = (x,...,x,), y=(¥1,..., V), and j; is the complex conjugate of
y;- We wish to construct an infinite-dimensional version of this inner
product. The most obvious attempt is to consider the space CN of all
complex sequences indexed by N. This is a complex vector space in a
natural way, but it is not clear how we can extend the notion of inner
product to it. If we replace the finite sum in (1.1) by an infinite one then the
series will fail to converge for many pairs of sequences. We therefore restrict
attention to a subspace of CV.

1.1 Definition /* denotes the vector space over C of all complex
sequences x = (x,)X.; which are square summable, that is, satisfy

©
Y xlP<x,
n=1

with componentwise addition and scalar multiplication, and with inner
product given by

. 9)= Y XpJus (12)

n=1
where x = (x,), y = (¥,). O
‘Componentwise’ means the following: if x = (x,), y=(y,)€/?and 1eC

then
X+_V=(Xn+yn)f.°=1’

dx=(Ix )% .
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1 Inner product spaces 5

Let us check that this definition of inner product does make sense. Using
the Cauchy—-Schwarz inequality we find, for keN,

3 b= 3 i

< E S b

If (x,) and (y,) are square summable sequences then the latter expression is
a finite number independent of k. Thus the series (1.2) converges absolutely,
and so (x, y) is defined by (1.2) as a complex number for any x, ye/?2.
It is obvious that #2 is closed under scalar multiplication but less so that
it is closed under addition: we defer the proof of this to Exercise 1.12 below.
Let us make precise what it means to say that C" and /2 are spaces with
an inner product.

1.2 Definition An inner product (or scalar product) on a complex vector
space V is a mapping
(', )VxV-C
such that, for all x,y,zeV and all AeC,
@) (x,y)=(y,x)7;
(i) (Ax, y) = Ax, y);
(i) (x+y,2)=(x,2) +(y,2);
(iv) (x,x)>0 when x #0.
An inner product space (or pre-Hilbert space) is a pair (V, (-, )} where Visa
complex vector space and (-, -} is an inner product on V. O
It is routine to check that the formulae (1.1) and (1.2) do define inner
products on C" and £2 in the sense of Definition 1.2. There are many other

inner product spaces which arise in analysis, most of them having inner
products defined in terms of integrals.

1.3 Exercise Show that the formula

x ——
(/9= J f(Dg(r) dt
0

defines an inner product on the complex vector space C[0,1] of all
continuous C-valued functions on [0, 1], with pointwise addition and
scalar multiplication. O
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6 An introduction to Hilbert space

1.4 Exercise Show that the formula
(A, B) = trace(B* A)

defines an inner product on the space C™*" of m x n complex matrices,
where m,neN and B* denotes the conjugate transpose of B. O

The conditions (ii) and (iii) in the definition of inner product are often
summarized by the statement that (-, -) is linear in the first argument. It
follows from the definition that it is also conjugate linear in the second
argument: this means that it satisfies (i) and (i) of the following.

1.5 Theorem For any x,y,zin an inner product space ¥ and any 1eC,
(i) (x,y+2)=(x,y)+(x,2);
(i) (x,Ay)= Alx, y);
(iii) (x,0)=0=(0,x);
(iv) if (x,z)=(y,2) for all zeV then x=y.
Proof. (i) Using Definition 1.2(i) and (iii) we have
x,y+2)=(y+2z,x)"
={(y,x) +(z,x)]~
=(yx)" +(z,x)"
= (x,y) + (x,2).
The proof of (ii) is similar. To prove (iii) put A =0 in (ii).
(iv) If (x,z) = (y, z) then
0=(x,2) +(=Wy,2)
=(x,2)+(-y,2)=(x—y,2).
If this holds for all ze V then in particular it holds when z= x — y; thus
(x —y,x —y)=10. By 1.2(iv) it follows that x — y=0. O

1.1 Inner product spaces as metric spaces

In the familiar case of R® the magnitude |u| of a vector u is equal to
(#,u)'/2, and the Euclidean distance between points with position vectors
u,v is |u—v|. We copy this to introduce a natural metric in an inner
product space.

1.6 Definition The norm of a vector x in an inner product space is defined
to be (x,x)"/2. It is written |x|. 0O
Thus, for x = (x,,...,x,)€C" we have

el = Qx4+ + [xa] D2,
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1 Inner product spaces 7

while for f eCJ0, 1], with the inner product described in Exercise 1.3,

1i={[ trorad ™

1.7 Exercise Let x = (1/n)., /2. Show that |x| = n/./6. What is ||I,]
where I, € C**"is the identity matrix and the inner product of Exercise 1.4 is
used? O

1.8 Theorem For any x in an inner product space V and any AeC
(i) ||x]| 2 0; |x| =0 if and only if x =0;
(i) 1x] = A1)
Proof. (ii)
[ Ax]| = (Ax, Ax)V/% = {Ad(x, x)} /2
~ 4. 0
One knows that in R (x, y) is | x||| y| times the cosine of an angle, from

which it follows that |(x, y)| < || ||| y||. This relation continues to hold in a
general inner product space.

1.9 Theorem For x,y in an inner product space V,

|G, < [x] [ v (1.3)

with equality if and only if x and y are linearly dependent.
(1.3) is known as the Cauchy-Schwarz inequality.

Proof. Suppose first that x and.y are linearly dependent ~ say x = iy where
4€C. Then both sides of (1.3) equal |4]||y]?, and so (1.3) holds with
equality.

Now suppose that x and y are linearly independent : we must show that
(1.3) holds with strict inequality. For any AeC, x + 1y # 0 and therefore

0<(x+Ay,x + Ay)
=X, x+Ay)+ (Ay,x + 1y)
= (x,x) + (x, 1) + (4y, x) + (4y, 1)
= x| + Ax, y) + Ax, y) ™ + |47 ¥]]
= [x]|* + 2 Re{(x, y)} + |4]2] y[ .

Pick a complex number u of unit modulus such that a(x, y) = |(x, y)|. On
putting 4 = tu we deduce that, for any te R,

0 < [x]2 +2{tx, nle + || ) 222
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8 An introduction to Hilbert space

This can only happen if the real quadratic on the right hand side has
negative discriminant: that is,

41(x, »)> — 4] x|?] ¥]? <O,
which yields the desired conclusion

[Ce ] < <Ll O

1.10 Exercise Prove that, for any feC[0,1],

1 ( . d < 1 1 2d 1/2
t t S— s
L f(t) sin nt dt \/2 {L (0] t}

and describe the functions f for which equality holds. O
The following relation is known as the triangle inequality.

1.11 Theorem For any x,y in an inner product space V,
Ix + vl < <] + [yl

Proof. We have (compare the proof of Theorem 1.9)
Ix + 2 = lIx]|* + 2 Re(x, y) + | y]|*
< fx [+ 2|, 9] + [l v]12
< xl®+ 2l vl + ]2
= (x| + ¥ O

1.12 Exercise By applying 1.11t0C* k=1,2,...,show that #2 is closed
under addition. O

1.13 Theorem (the parallelogram law) For vectors x,y in an inner
product space,

e+ y)2 + fx = y2 =2]x]? + 2] 5]
Proof. We have
[x+ yl2= %2+ (x, ) + (v, %) + | y]|%

agg PTGy = G+ .

The reader is recommended to draw a diagram in order to see the reason
for the name of this relation.

We have defined the norm in an inner product space in terms of the inner
product; it has some significance that if we know how to calculate the norm
of any vector then we can recover the inner product. This is because of the
following result, called the polarization identity, the proof of which is a
simple exercise.
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1 Inner product spaces 9

1.14 Theorem For any x,y in an inner product space,
4(x, )= x + ¥ =[x =yl + il x + iy)* —iflx - iy O

Note that the polarization identity can be written
3

1 . .
(x,y)= y Y ix +imy| 2

n=0

1.15 Exercise Let H, K be inner product spaces and let U:H - K bea
linear mapping such that ||Ux| = x| for all xeH. Prove that

(Ux,Uy)=(x,y) for all x,yeH. O
In the coming chapters we shall need a supply of examples on which to
try out the concepts and results we shall meet. So far the only inner product
spaces we know are C*, /2, C™" and (0, 1]. Calculations in the first three
are often simple, but do not exhibit effectively the interaction of inner
product properties with other mathematical structure. On the other hand,
C[0, 1] has the disadvantage that a general continuous function is a rather
intangible entity. An ideal source of exercises is to be found in inner product
spaces of rational functions, relatively concrete objects for which the reader
will already have some intuition. Calculation in these spaces is often quite
easy, particularly when use is made of basic complex analysis (principally
Cauchy’s integral formula, the residue theorem and some elementary facts
about power series expansions). They illustrate the power of Hilbert space
methods in complex analysis and lead on to the topic of the last quarter of
the book, where we shall see that spaces of rational functions are of
practical importance in a range of engineering applications.

1.16 Examples RI? denotes the space of rational functions which are
analytic on the unit circle

D ={zeC:|z| =1},
with the usual addition and scalar multiplication and with the inner
product

1 ——dz
(fyg)=§g£of(z)g(z)7, (1.4)

the integral being taken anti-clockwise round dD.
RH? is the subspace of RI? consisting of those rational functions which
are analytic on the closed unit disc clos D, where

D={zeC:|z| < 1},
with inner product given by (1.4).

Thus a rational function (i.e. a ratio of two polynomials with complex
coefficients) belongs to RI? provided it has no pole of modulus 1 and
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10 An introduction to Hilbert space

belongs to RH? if it has no pole of modulus less than or equal to 1. The
spaces I? and H? we shall meet later: the prefix ‘R’ stands for ‘rational’.
This is a convention used in electrical engineering.

Let us check that (1.4) does define an inner product on RI?. Axioms (i) to
(iii) in Definition 1.2 are immediate; we must show that (f, f) >0 when
f #0.On parametrizing 0D by z =€, —n < 8 < n, we can re-write (1.4) in
the form

1 {" E—
(fr9) =35 f f(e)g(e) do,
n -n
so that, in particular
1 (7 .
(£, N =2~f | f(e)|2d6.
n -

Since f(e') is continuous on [ —n, 7], the right hand side is positive unless
f=0.

To illustrate how Cauchy’s integral formula simplifies calculations in
RI? let us work out the inner product of the functions

1 t
f(z)=z_——a’ g(Z)=‘z_—ﬂ
where || <1, |f] < 1.

1 {1 1 dz
(fag)=r - -
i anz-a zZ —

o

=)

z
Since zzZ =1 on 0D, this yields

1 [ 1 1
(g =5= —dz

2nidaDz—a.1—ﬂz
1 { h2)

27 Jpz—a

dz

where h(z) = (1 — fz)~. Since |B| < 1, h is analytic on clos D, and so
Cauchy’s integral formula applies to give

(f.9)=h(x)
1
T1-fa O

Another worthy inner product space is W{a, b], described in Problem
1.2. This is a representative of a whole class of inner product spaces central
to the theory of differential equations.

We turn next to the development of the properties of the metric | x — y
in an inner product space. In fact it will pay us to begin with a more general
type of space.
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