Chemistry and Pharmacology of Natural Products

Plant lectins

CHEMISTRY AND PHARMACOLOGY OF NATURAL PRODUCTS

Series Editors: Professor J.D. Phillipson, Department of Pharmacognosy, The School of Pharmacy, University of London; Dr D.C. Ayres, Department of Chemistry, Queen Mary College, University of London; H. Baxter, formerly at the Laboratory of the Government Chemist, London.

Also in this series Edwin Haslam Plant polyphenols: vegetable tannins revisited D.C. Ayres & J.D. Loike Lignans: chemical, biological and clinical properties

Plant lectins

A. PUSZTAI The Rowett Research Institute, Aberdeen

CAMBRIDGE UNIVERSITY PRESS Cambridge New York Port Chester Melbourne Sydney

CAMBRIDGE

Cambridge University Press 0521328241 - Plant Lectins A. Pusztai Frontmatter More information

> CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

Cambridge University Press The Edinburgh Building, Cambridge CB2 2RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9780521328241

© Cambridge University Press 1991

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 1991

A catalogue record for this publication is available from the British Library

ISBN-13 978-0-521-32824-1 hardback ISBN-10 0-521-32824-1 hardback

Transferred to digital printing 2006

Contents

	Acknowledgements	vii
	Introduction	1
1.	Lectins and their specificity	3
	D-mannose/D-glucose-specific lectins	4
	N-acetyl-D-glucosamine-binding lectins	9
	<i>N</i> -acetyl-D-galactosamine/D-galactose-binding lectins	14
	Ricinus communis lectins	15
	Soyabean (Glycine max) agglutinin	20
	Phaseolus vulgaris lectins (PHA)	24
	L-fucose-binding lectins	30
2.	Structure of lectins	32
	Primary sequences	32
	Metal binding sites	35
	Hydrophobic sites	36
	Glycosylation sites	37
	Carbohydrate-binding sites	37
	Three-dimensional structure	37
	Conclusions	38
3.	Localization and biosynthesis in plants	39
	Localization in the plant and cellular location	39
	Seeds	39
	Vegetative parts	43
	Biosynthesis of plant lectins	50
4.	Biological functions in plants	57
	Interactions with endogenous receptors	57
	Interactions with exogenous receptors	59

CAMBRIDGE

Cambridge University Press 0521328241 - Plant Lectins A. Pusztai Frontmatter More information

vi Contents

	Defence against microorganisms and potential	
	predators	60
	Legume-Rhizobium symbiosis	64
	Miscellaneous functions	70
5.	Effects on blood cells	74
	Agglutination	74
	Mitogenic stimulation of lymphocytes	78
	Immunosuppression	95
	Lectin-dependent blood cell cytotoxicity and	
	phagocytosis	101
	Lectin-induced mast cell reactions	102
6.	General effects on animal cells	105
	Insulin-mimicking effects on adipocytes and other	
	cells	105
	Effects of lectins on cells of the digestive tract	107
	Lectins in foods	108
	The nutritional toxicity of PHA	111
	Effects of PHA on the digestive tract in vivo	113
	Effects of other lectins on cells of the small	
	intestine	159
	Transport of lectins through the membranes of the	
	adult gut – a potential system for the oral	
	delivery of drugs	179
	Interactions with nerve cells and transneural	
	transport of lectins	183
	Miscellaneous interactions of lectins with cells and	
	their underlying structural elements	190
	Cytotoxins – magic bullets – immunotoxins	199
	References	206
	Glossary	251
	Index	253

Acknowledgements

The author is a Senior Research Fellow of the Rowett Research Institute. Both his research carried out over the years and writing of this book have been made possible by Institute's generous support.

The author is also indebted to The Leverhulme Trust for the award of an Emeritus Fellowship and to the Royal Society of Edinburgh for the Auber Bequest Award. Their support in the final phases of this work is gratefully acknowledged. The author sincerely thanks the many colleagues and, especially, Drs S. Bardocz and K. Baintner, for the valuable discussions, their time, substantial help and generous advice with the manuscript during the compilation and checking of data and the writing of the book. The micrographs in Figures 6.2, 6.3, 6.4, 6.13 and 6.14 were taken by Dr T.P. King and his permission to include them in this book is much appreciated. Our work is a part of a FLAIR Concerted Action Programme (No. 9) supported by the Commission of European Communities and coordinated by the author.