

Cambridge University Press 0521319870 - Scaling: Why Is Animal Size so Important - Knut Schmidt-Nielsen Table of Contents More information

Contents

	Preface	<i>page</i> xi
1	The size of living things	1
	The smallest and the largest	2
	Giant dinosaurs: Were they semiaquatic?	3
	The largest land mammals	4
2	Problems of size and scale	7
	Definition of scaling	7
	Constraints can be overcome by a novel design	9
	Similarity	11
	Allometric scaling	14
	Dimensions	17
	Dimensionless quantities	19
3	The use of allometry	21
	Biological significance and statistical significance	21
	The allometric signal	22
	Secondary signals	23
	Outliers and extrapolations	23
	The use of allometric equations	25
	Were dinosaurs stupid?	26
	Scaling fish	29
4	How to scale eggs	33
	Bird eggs	33
	Requirements to be met	34
		v

Cambridge University Press 0521319870 - Scaling: Why Is Animal Size so Important - Knut Schmidt-Nielsen

Table of Contents More information

vi	Contents	
	Egg size and bird size	35
	Incubation time	36
	Pores in the eggshell	37
	Water loss from eggs	39
5	The strength of bones and skeletons	42
	What skeletons do	42
	Scaling mammalian skeletons	43
	What about real animals?	45
	How light are bird bones?	47
	Aquatic animals: lighter skeletons?	48
	The strength of bones	49
	External skeletons: a complicated matter	52
	Breaking eggshells	54
6	Metabolic rate and body size	56
	Metabolic rates of mammals	57
	Is the "true" slope really 0.75?	60
	Specific metabolic rate	62
	Marsupial mammals	64
	Birds	65
	Reptiles	68
	Amphibians and fish	71
	Invertebrates	73
7	Warm-blooded vertebrates: What do metabolic regression	
	equations mean?	75
	Body temperature	75
	The surface law	77
	Isometric or not?	82
	McMahon's model	83
	Gravitational effects as an explanation?	86
	Metabolic similarities	87
8	Organ size and tissue metabolism	90
	Tissue metabolism and cell size	90
	Summated tissue respiration	94
	Metabolic equipment of the tissues	97
9	How the lungs supply enough oxygen	99
	The lungs of mammals	99
	Rird lungs	104

Cambridge University Press 0521319870 - Scaling: Why Is Animal Size so Important - Knut Schmidt-Nielsen Table of Contents

More information

	Contents	vii
	A remarkably simple concept: symmorphosis	106
	Cold-blooded vertebrates	108
	Fish gills	109
	Gill area	111
10	Blood and gas transport	115
	Hemoglobin concentration	115
	Blood volume	117
	Red cell size	118
	Oxygen uptake and delivery	119
	Oxygen affinity of hemoglobin	119
	Oxygen unloading in the tissues	121
	Fuel supply	124
	Conclusions	125
11	Heart and circulation	126
	The mammalian heart	126
	Shrews, the smallest mammals	128
	The bird heart	130
	Marsupials	132
	Cold-blooded vertebrates	133
	Invertebrates	134
	The work of the heart	135
	Vascular turbulence	137
	Circulation time	139
	Non-scaleable variables	141
12	The meaning of time	143
	Time and frequency: How fast beats the heart?	143
	Metabolic rate and metabolic time	145
	Life: How long, how fast?	146
	Long life and big brains	148
	Real time	149
	A cold look at time	150
13	Animal activity and metabolic scope	151
	Maximal performance	151
	An important principle	152
	Metabolic scope	152
	Taylor and Weibel	153
	Birds and bats	156

Cambridge University Press

0521319870 - Scaling: Why Is Animal Size so Important - Knut Schmidt-Nielsen

Table of Contents More information

viii	Contents	
	To supply oxygen for flight: lungs and heart	158
	Factorial scope: cold-blooded vertebrates	160
	Muscle mass and muscle power	162
14	Moving on land: running and jumping	165
	Running on land	165
	The energy cost of running	167
	How fast animals run	172
	Running uphill and carrying loads	175
	Scaling of jumps	176
	Elastic energy storage	180
15	Swimming and flying	182
	Fish	182
	Swimming salmon	184
	Flying animals	187
	Birds	188
	The structure of birds	188
	Flight speed	189
	Drag and cost of flight	190
	Maximum size for bird flight	191
	Is there a lower size limit?	193
	Cost of transport	194
16	Body temperature and temperature regulation	197
	Scaling of heat loss	197
	The role of fur	201
	Conductance and tolerance to cold	202
	Warm-blooded dinosaurs?	204
	The smallest birds and mammals	204
17	Some important concepts	209
	Non-scaleable and scale-independent variables	209
	Optimal design	211
	Constraints and discontinuities	212
	Ecological implications	213
	Appendixes	217
Α	Symbols used	219

В

The allometric equation

220

Cambridge University Press 0521319870 - Scaling: Why Is Animal Size so Important - Knut Schmidt-Nielsen Table of Contents More information

	Contents	1X
C	Recalculation of equations according to units used for	
	body mass	222
D	Algebraic rules for operating with expressions that contain	
	powers and roots	223
E	Dimensional formulas for some commonly used physical	
	quantities in the M L T system	224
	References	225
	Index	237