Cambridge University Press
0521318831 - Program Construction
R. G. Stone and D. J. Cooke

Excerpt

More information

1

A modern approach to computing

1.1 An appraisal of the current situation.

Is anything the matter?

In the early days of computing the machines were not very
powerful, there were not many of them and few people had high
expectations of them. All that has changed. Computers seem to have
become an essential part of everyday society and large numbers of people
are employed in supporting existing computer systems and creating new
ones.

Although the use of computers is widespread the public image of
computers and the computing profession is in need of improvement.
Everyone has their own story to tell of the time when their enquiry was
rejected with the excuse that ‘it’s not possible since we installed the
computer system’. There have been some well-publicised disasters with new
computing systems.

Yes, something is the matter!

What is wrong with computing today?
Is it the machines? Well they are cheaper, smaller, faster and more
reliable than they used to be. No, they do not seem to be the problem.

Isit the programs then? Software today is more expensive, more complex,
but no more reliable than it used to be.

Why should this be? Is it the fault of the programmer teams? Are they not
asclever as they used to be? No, they have been asked to do the impossible.
Itislike asking a child who has built toy houses out of Lego bricks to design
and build tower blocks for people to live in. Using another analogy, it is like
asking people who have discovered how to cross streams by stepping-
stones and planks of wood to build a suspension bridge over an estuary.
This is the scale of the increase in complexity that has faced programmers in
recent years.

The increase in complexity is graphically illustrated by Figure 1.1.

© Cambridge University Press www.cambridge.org

http://www.cambridge.org/0521318831
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press
0521318831 - Program Construction
R. G. Stone and D. J. Cooke

Excerpt

More information

2 A modern approach to computing

What is being done?

Well until recently, not a lot. It has taken a long time to obtain
widespread acknowledgement within the computing community that a
problem exists. Now that this is established progress is being made — albeit
slowly.

Fig. 1.1

System complexity

1960 1970 1980

AT
) (=

Documentation

© Cambridge University Press www.cambridge.org

http://www.cambridge.org/0521318831
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press
0521318831 - Program Construction
R. G. Stone and D. J. Cooke

Excerpt

More information

An appraisal of the current situation 3

There were high hopes that ‘Structured Programming’ would be the
solution. This was only marginally successful but crucially important for
creating the idea that training and retraining computer professionals was
possible and necessary.

The construction industry

Pursuing the bridge building analogy a little further it is quite clear
that real bridges are not built by dumping ballast, concrete, etc., into the
middle of the water on day one. In fact a prolonged process of surveying,
designing, costing, model building and testing is performed before any
construction is begun. This bridge construction process is entirely
appropriate for the permanent large scale structures capable of supporting
road or rail traffic.

(Of course this is not an appropriate solution for the hiker who simply
wants to cross a stream to get to his destination before sunset. He will use
only the immediately available materials such as stones, branches, etc., and
he will experiment — e.g. to see if it will hold his weight.)

The fault with program construction in comparison to bridge
construction is that no equivalent of the detailed drawings of the design of a
bridge is in general use. That is not to say that there are no diagrams —there
are —but they tend to be used in a ‘cavalier’ way, not as part of a methodical
process.

The world of the artist
Let’s move away from the construction industry and consider a
possible comparison between program construction and oil painting.

Because it is possible to overpaint any colour with any other using oils,
we could say that it does not matter if mistakes are made — they can always
be painted over until we get it right.

This is a useful analogy with computing because apart from a small
percentage of control programs (notably space shuttle landing programs)
the consequences of errors in programs are not disastrous. They are
frustrating, cost time and money to put right but are not disastrous, so why
bother to get the program right first time?

The snag is that the ability to overpaint does not in itself make the person
holding the paintbrush into a master artist. In fact the greater the artist the
less likely their need to overpaint!

© Cambridge University Press www.cambridge.org

http://www.cambridge.org/0521318831
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press
0521318831 - Program Construction
R. G. Stone and D. J. Cooke

Excerpt

More information

4 A modern approach to computing

The detection of errors

It is symptomatic of the state of computing that errors are still
known as ‘bugs’, in an attempt to pass off the blame onto some unnamed
interfering force that spoils our otherwise perfect programs. (The term ‘bug’
originates from the days when computers contained large numbers of
electromechanical relays into which insects could, and occasionally did,
penetrate thus preventing normal operation — those days have passed but
the term is still with us!)

Testing, whether performed by the originators of software or specialist
teams (or the customer!), may reveal some errors which can be ‘corrected’.
What then? Who knows if there are as yet undetected errors in the original
code or new errors that have been introduced with the ‘corrections™

If you were an astronaut, would you be satisfied with the statement that
‘all known bugs in the shuttle landing program have been eliminated’? You
would want proof that the program would not fail! Alright, but what does
that mean? Proofs are available as a tool only in mathematics - we will have
to find a way of discussing programs as mathematical objects.

The distribution of effort

There is undeniably a sense of achievement to be had from ‘getting
a program to run’. People who have the ability to fix’ problems in programs
that have defeated everyone else are highly valued. But in the larger systems
currently being built far too large a percentage of project time is being spent
on this activity. Much more effort is needed in the early stages to minimise
the need for ‘testing and debugging’. This means getting the specification
right at the beginning and sticking to it.

A powerful argument for getting things right at the beginning is that the

cost of correcting errors increases dramatically the later the error is
discovered during the production of a system (see Figure 1.2).

What is in a specification?
What does the specification of a bridge achieve? In order to be
useful the design must be

concise not full scale, no irrelevant detail, but still representing
the intended bridge adequately

consistent plan and elevation agree

precise no ambiguities.

These are exactly the requirements for specifications of computer software
only the medium for expressing the specification is different.

© Cambridge University Press www.cambridge.org

http://www.cambridge.org/0521318831
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press
0521318831 - Program Construction
R. G. Stone and D. J. Cooke

Excerpt

More information

An appraisal of the current situation

Flowcharts and other drawings have been tried and found wanting. The
English language has been tried and found to be too ambiguous — or if not
ambiguous then too verbose. The language that is known to be concise and
precise that is currently being encouraged for use in specification is
mathematics — which also has the advantage of allowing consistency proofs.

A revolution

The scenario sketched out up to now is that for a revolution in
computing. There is a desperate need for formality, the ability to work with
mathematical notation, and above all a desire to create high-quality correct
software. The skills of coding ingenuity, optimisation and patching are
becoming less important in favour of formal specification and systematic
implementation with the backing of the rigour and precision of
mathematics.

Fig. 1.2

———— - -

Cost of error | 7
correction |},

Located

]
I
i
i
!
1
1
I
|
|
|
i
f
I
§
- |
during]
§
1
|
I
|
[
I
[

14
14
\

l
l
|
I
!
!
!
I
I
I
I
i
1

Requirement High-level Low-level Coding Unit test System test Customer
specification design design use

© Cambridge University Press www.cambridge.org

http://www.cambridge.org/0521318831
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press
0521318831 - Program Construction
R. G. Stone and D. J. Cooke

Excerpt

More information

6 A modern approach to computing

1.2 A way ahead

So, there is a problem. Much Computer Science research over
recent years has been directed at alleviating this ‘software crisis’ and the
methods presented here incorporate some of the more tangible results to
emanate from this research. We shall present a practical methodology for
constructing procedural programs from formal specifications, in such a way
that the individual steps can be justified (mathematically if necessary).

This book is not a course on algorithm design — such a course requires
more detailed study relative to the specific problem domain, such as sorting,
numerical analysis, file processing, etc., all proper subjects in their own
right. Nor is it a book on ‘writing programs in X’ (name your own X!!)
although coding in some specific language is necessary of course.

Our intention is that you should be able to take a specification, written in
a particular Specification Language, and, using a Program Design
Language (PDL), extract a program plan which is subsequently encoded in
an executable Target Language. Currently, specification languages are in a
state of flux. We have chosen to base our presentation on VDM - the
Vienna Definition Method, named after the IBM Vienna Laboratories
where it was originated — which is the only such language to have appeared
in a text book [20]. (Other systems gaining support but not yet generally
seen outside of research journals and conference papers are ‘Z’ —see [17] for
a very readable example of a Z specification — and languages variously
called OBJ and CLEAR, etc., developed by Goguen and Birstall and their
fellow workers [16]. The equational systems presented in our Chapter 10
closely follow the style of CLEAR.) At the other end of the spectrum, typical
target languages are Pascal, FORTRAN and assemblers, but the choice
here is almost limitless.

Once into PDL the remainder of the construction process is largely
‘handle-turning’ and hence may be automated; the earlier part cannot yet
be treated in this way — there would be no need for conventional
programmers if this were so.

Of necessity our specifications are formal — if a specification is to be
translated into a program which causes a computer to react in a purely
mechanistic way then the same level of formalisation must be inherent in the
specification. Construction of the specification is non-trivial, it requires
detailed knowledge of the application subject area and an understanding of
how the user interfaces with the computer system. This is a problem of
ergonomics and is not addressed here.

For reasons discussed at length in the body of the text, we shall restrict
the way in which we interface with (real) target languages. Not to do this

© Cambridge University Press www.cambridge.org

http://www.cambridge.org/0521318831
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press
0521318831 - Program Construction
R. G. Stone and D. J. Cooke

Excerpt

More information

A way ahead

would necessitate extensive knowledge of the semantics of the particular
language and its implementation. The approach adopted gives ample scope
for object code optimisers to make the code more efficient; efficiency being a
much lower priority than the correctness of the program as delivered by us.
The entire methodology is based firmly on formal specifications and the
reader will be better equipped to appreciate how they are to be used after
they have been introduced in Chapter 2. Nevertheless, in the hope of
whetting the appetite we now attempt a brief overview of our modus
operandi, our plan. In keeping with our philosophy of using diagrams as a
legitimate aid to ‘sorting things out’ we shall use a diagram here.

Fig. 1.3

(the old route)

Executable

2. Specifications —

7. {Proofs)

Target Code

8. 6. Templates
{Template |
Definition) l

4. Transformed
Specifications
~.

—

——

7. Verification

© Cambridge University Press

www.cambridge.org

http://www.cambridge.org/0521318831
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press
0521318831 - Program Construction
R. G. Stone and D. J. Cooke

Excerpt

More information

8 A modern approach to computing

In this diagram the numbers refer to our chapters, the solid lines (——)
relate to the practical stages in developing code to satisfy a specification, the
chained lines (—- - —- - —) indicate where formal justification can be provided
to ensure validity of these methods, and dashed lines (———-—) show other
logical connections. The remaining arrow (H-b) is only for completeness
and indicates the old, insecure, link between the problem and an answer
(not necessarily a solution!). Notice that it does not have an associated
‘proof’ arrow although one can be found by going via 4, 5 and 6 (or 4, 5and
9). To take this logical route is to admit the possibility of a stepwise practical
approach, voila!

Asalready noted, Chapter 2 sees the introduction of specifications. It isin
the users interest to ensure that what is specified is exactly what he wants
specified. This is where logic programming languages come into their own,
programs in such languages being of similar structure to specifications.
However implementations of such languages are too inefficient for the
majority of ‘final’ systems. At their current stage of development logic
programming languages are probably most suitable for prototyping
(checking out specifications) and as such lie outside the scope of the text.

Diagrams can be used to represent the flow of data through a specification
as well as control flow through conventional (procedural) programs. The
disciplined use of diagrams is the subject addressed by Chapter 3 and this
leads naturally to the specifications in Chapter 4 which presents a glimpse
of how we may transform specifications. Ultimately we wish to move from a
logical form to a functional one from which we can extract a procedural
program. This aim — which is attainable for those tasks which are soluble by
computer, although there are theoretical limitations — is a considerable
challenge.

As an intermediate goal we introduce PDL in Chapter 5 and then, in
Chapter 6, consider how to realise PDL in more familiar languages. Our
Program Design Language is similar to Pascal and Algol 68, but is neither.
It has simple semantics, which are discussed in Chapter 8, and can be
extended by the addition of Abstract Data Types (ADTs) to create a higher
level PDL in which the data types are oriented more to particular
application areas. These ADTs are introduced in Chapter 9.

Formal questions relating to PDL and its possible extensions are
discussed at some length in Chapters 7 and 10. Essentially these look at
the requirements of correctness theorems. Knowledge that a correctness
theorem can be proved for a given specification/program combination is
enough, we don’t need to prove it again. However, if such a proof is known
then so is the program and we need not rewrite it; if any aspect of the

© Cambridge University Press www.cambridge.org

http://www.cambridge.org/0521318831
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press
0521318831 - Program Construction
R. G. Stone and D. J. Cooke

Excerpt

More information

A way ahead 9

problem is new then we ought to consider how to formally verify that our
‘solution’ is a solution. Details of such proofs can often be omitted or
checked by an automated theorem prover but the program constructor will
still be required to know how the specification, the program and the proof
inter-relate.

Chapter 11 tackles the question of how to cope with large, existing,
important programs; how to rationalise their existence. In a perfect world
such potentially ‘dodgy’ programs would either not exist or could instantly
be ejected and replaced by verified software. This is not so, and hence we
have Chapter 11.

Finally, Chapter 12 includes a small case study. This is complete except
for full formal proofs. Such proofs would probably double the size of this
book.

In teaching courses based on this material, notation and terminology has
always been a problem. In an undergraduate context, when timescales are
much larger and a proper computer-oriented mathematics course is run in
tandem, little difficulty is experienced by the student. In the case of
industrial short courses or post-graduate ‘conversion’ courses time itself (or
should we say, lack of it} is the main problem. What is required is a facility to
treat topics in an abstract mathematical fashion. Mathematics here does
not imply such topics as traditional calculus, which is totally irrelevant, but
exposure to almost any kind of algebra would be beneficial. At
Loughborough we use our own local text [8] and the Alvey directorate has
funded the production of short-course material [36] aimed specifically as a
pre-requisite for formal software engineering courses. But the use and
availability of such material is outside of our dictate. Within the confines of
this book we shall attempt to ease the introduction of notation by using two
forms. For instance we may initially write IS_EQUAL_TO and later, when
the reader is used to ‘saying the words’ and is getting tired of writing so
much, replace it by ‘=". Consistent with using simple arithmetic examples
from the beginning, we shall however presume that the reader can do simple
‘sums’ and is familiar with the symbols, +, —, * (for multiplication), +, <,
<, =, etc. The only other symbol not properly introduced in the text is ‘[J’
which is used to indicate the end of a proof; but this is only used in Chapters
7 and 10.

Our assumptions about computers and the readers’ knowledge of
computers are minimal. As viewed through programming languages they
are devices for storing symbolic data, performing simple arithmetic and
logical operations —one at a time —under the control of a list of commands,
with the added facility that we can jump about within this list.

© Cambridge University Press www.cambridge.org

http://www.cambridge.org/0521318831
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press
0521318831 - Program Construction
R. G. Stone and D. J. Cooke

Excerpt

More information

10 A modern approach to computing

Before concluding this introduction we must say something about
testing. We are concerned with correct programs, testing cannot in any
practical sense be used to guarantee that a program is correct — in lucky
cases it can show that a program is incorrect. The problem is one of size.
Consider the addition of two 32 bit integers taking one millionth of a
second. This is a simple operation. To test it properly we need to check it for
all possible values (half of which would be wrong!). For the computer to
generate all the figures for us to examine would take

22324107 ¢ seconds = 5.9* 10° years (over half a million years!)

It would take much longer to print these values, and since the machine
could not store all the values it would have to wait during the calculations
so the time required would be much longer. And then you (or your great-
great...grand children) have to check them. Now try a more complicated
problem than adding two numbers! — 'nough said?

To summarise, we expand the ideas presented in [29] and link them to
formal specifications.

The book is not about algorithm design,
it is not about a specific programming language,
it does not incorporate real time programming (per se) and

it is not a collection of programming recipes.

The book dees present a framework for solving programming
problems,

it does allow us to defer decisions regarding data structures and

it does highlight key issues and vagaries within a problem, and
brings them to a head.

In total, just as someone who knows the English language may not be
able to write a (good) novel, it takes more than a knowledge of the words in
a programming language to be a (good) programmer. It needs discipline,
and an analytical mind. If you're still with us — read on.

© Cambridge University Press www.cambridge.org

http://www.cambridge.org/0521318831
http://www.cambridge.org
http://www.cambridge.org

