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INTRODUCTION

It has long been conjectured that if the finite group G
acts freely on the standard sphere S3, then the action is
topologically conjugate to a free linear action. Equivalently
the orbit space 83/} is homeomorphic to a manifold of constant
positive curvature, and such elliptic 3-manifolds are
classified in terms of the fixed point free representations of
3G in SO(4), see the book by J. Wolf [Wo] for example. The
purpose of these notes is to collect together the evidence in
favour of this conjecture at least for the class of groups G
which are known to act freely and linearly in dimension three.
The main result is that if G is solvable and acts freely on
S3 in such a way that the action restricted to all cyclic
subgroups of odd order is conjugate to a linear action, then
the action of G is conjugate to a linear action. This
reduction to cyclic groups (which is false in higher
dimensions) depends on (a) the algebraic classification of the
fundamental groups of elliptic manifolds and (b) geometric
arguments due to R. Myers and J. Rubinstein classifying free
Z2/2 and Z/3-actions on certain Seifert fibre spaces. The proof
is contained in Chapters I-IV; for part (a) we follow an
unpublished joint manuscript with C.T.C. Wall [Th-W], and for
part (b) the original papers [My] and [R2]. Besides the
reduction theorem already quoted the argument implies that the
original conjecture holds for groups G whose order is
divisible by the primes 2 and 3 only. For the non-solvable
group SL(2,F5) the corresponding reduction theorem is weaker

- a free action which is linear on each element embeds in a
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free linear action on S7 (see Chapter VI).

The other topics which we consider are the classifying

map B¢: BG - BDiff+S3 associated with a free smooth action
by G, the homotopy classes of finite 3-dimensional Poincaré
complexes with finite fundamental group, and (in an appendix)
Heegard decompositions of genus 2 for elliptic manifolds.
In a "concluding unscientific postscript" we suggest various
ways in which the remaining core problem of free actions by
cyclic groups may be approached - but the actual results we
obtain are very weak.

These notes are based on a course of lectures which I
gave at the University of Chicago in the spring of 1983, and
have been available in a preliminary version for some time.
Among those who listened to me then I am particularly grateful
to Peter May and Dick Swan for their helpful comments. I
would also like to thank Terry Wall for teaching me over the
years much of the mathematics on which this work is based,
and for being always willing to listen to my ideas however
haltingly expressed. Finally I would like to thank the
Editor of the IMS Lecture Notes for agreeing to accept an
expanded version of the Chicago notes for publication in the
series, David Tranah of Cambridge University Press for his

advice and patience, and Gwen Jones for typing the manuscript.

Cambridge, May 1986.

© Cambridge University Press www.cambridge.org



http://www.cambridge.org/052131576X
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-0-521-31576-0 - Elliptic Structures on 3-Manifolds
C. B. Thomas

Excerpt

More information

CHAPTER I: SEIFERT MANIFOLDS.

Let M3 be a compact, connected 3-dimensional

manifold without boundary. Where necessary we shall assume
that M3 has a smooth structure - there is no loss of
generality in doing so, since M3 is triangulable and the

obstructions to smoothing vanish. Consider first a smooth

action by the compact group SO(2) = Sl on M3. We use the
notation
GxM->M, xi~—»gx,
subject to the conditions (i) gl(gzx) = (glgz)x,
(ii) 1x = x and (iii) if gx = x for all x ¢ M, then g = 1,

Under condition (iii) the action of G is said to be effective.
The orbit Gx = {gx: g ¢ G} is homeomorphic to the homogeneous
space G/GX » where G = {g ¢ G: gx = x} is the isotropy group
of x. Since G is abelian, GX is the isotropy group of each

point of the orbit, and () G, = {1} by condition (iii).
xeM

The space of orbits M* = M/G is a 2-dimensional manifold with
respect to the quotient topology; the discussion of isotropy
below will make this plain. Since G acts on the tangent space

to x via the differential there is a representation of Gx on
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the normal space to x, which may be identified with the
complement in Tx to the tangent space along the orbit. With
respect to some equivariant Riemanian metric let VX be the
unit disc of this "slice" representation space. The
equivariant classification theorem below for pairs (M3,Sl)
depends on two classical results from equivariant topology,

see for example [J]:

THEOREM 1.1 The total space of the disc bundle G X Vx is

G
X

equivariantly diffeomorphic to a G-invariant tubular

neighbourhood of the orbit Gx in M, under the map [g,vl+> gv,

and the zero section G/G maps to the orbit Gx .
X

THEOREM 1.2 (stated for abelian transformation groups).

Let G act smoothly and effectively on the connected manifold

M. Then there is a subgroup H¢. 3G such that the union of the

orbits with H as isotropy subgroup forms a dense subset of M.

Furthermore the orbit space of these so called principal

orbits is connected.

H is called the principal isotropy subgroup; the union M(H)

of the principal orbits has the structure of a fibre bundle.

The first theorem depends on the choice of an equivariant

Riemannian metric on M, which gives rise to an exponential

map of maximal rank near the zero section G/G of the normal
X

bundle. Since the manifold M is compact, it is enough to

prove Theorem 1.2 for the submanifold G é Vx . Here the
b
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principal orbits belong to the complement of the zero section,
a point is moved in the direction of Gx by G, and in the
normal direction by GX (modulo the kernel of the slice
representation).

For the pair (M3,Sl) we see that a closed subgroup
is either {1}, Sl or isomorphic to the finite cyclic group
Z/H' The principal orbit type equals {1}, M* is a 2-manifold,
in general with boundary. However we shall restrict attention
to the case when M* = ¢, when M* is characterised by the
pairs (ol,g) or (nl,g). The first symbol distinguishes
between orientable and non-orientable; the second is the genus.
The assumption that M* = @ eliminates discussion of (a) fixed
points (isotropy subgroup equals Sl) and (b) GX = %é with the
slice action equal to reflection about an arc. Theorem 1.1
shows that the exceptional orbits map to a finite union of r

distinct points in M*.

Consider an exceptional orbit, Gx = Z/U with
¥ > 1 and case (b) excluded. Identify a slice with the 2-disc

D2, and let ¢ = 21T/u act via
z{r,8) = (r,6+vy), where (v,u) = 1 &0< v < u.

The action inside a small tubular neighbourhood N of the orbit
can now (following 1.1) be written as (r,9,Vy) (r,8 + vg,¢ +uy),
where  denotes the coordinate on s'. The exceptional orbit
itself corresponds to r = 6 = O and has isotropy group of

order y. The action on N is completely determined by the
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Seifert invariants (a,B), where a = u, Bv = 1 (mod o) and

O < B < a. Changing the orientation of the pair (N,3N) while
keeping the sl-action fixed replaces the pair (o,B8) by (o,a-8).
With computation of the fundamental group in mind pick out a
curve g in IN, which is orthogonal to a principal orbit h on

dN, and given by

A

g={(r,8,0): r =1. 6 = px, ¢ = Bx. O £ x < 2m}.

(B\)—l)/al

I

Here orientation is according to decreasing x, p
and we note that the curve m = ag + Bh is null-homotopic in

the solid torus N, see diagram.

.-

Remark: if no particular orientation of N is specified, there
is an ambiguity in the Seifert invariants, unless we take

O<Bs%.

When there are no exceptional orbits, that is the
Sl—action is principal, the bundle M » M* is classified by an
"obstruction or first Chern class" b « H2 (M* ,2Z) Z or Z/2 B
depending on whether M* is orientable or non-orientable. Again

with the computation of ™ in mind one can interpret b
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geometrically as follows:- write MO =M - go and let 9,

be a cross-section (as above) to the action on the boundary.

Then with a suitable orientation convention the equivariant

sewing of MO to No along aNo is determined up to equivariant

diffeomorphism by making q, + bh into a meridian curve, that

is one null-homotopic in No' In the general case one defines
1 1

2 2 2.0
* —
b ¢ H™ (M*=(D] ... D), Sy +-+ S s 2).

THEOREM 1.3 Let S! act effectively and smoothly on a closed,

Cconnected, compact c”-manifold M3, and assume that the orbit

manifold M* is without boundary. Then up to equivarient

diffeomorphism M3 is determined by the orbit invariants

{b; (Erg); (allﬁl)l"'l(u’rlsr)}l

subject to the conditions (i) b ¢ Z if € = o & b ¢ Z/2 if

(a.,B.) =1 if € = n
j it

Furthermore, if € = o, the equivariant diffeomorphism preserves

orientation.

Proof. It s not too hard given the discussion above to use

a given family of invariants to build up an Sl—action.

Conversely, given (M3,Sl) classify M* by (e¢,g). Theorem 1.2
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implies that we can find mutually disjoint tubular
neighbourhoods of the finite family of exceptional orbits
El""’Er' As above each of these can be described by the
pair (aj,Bj), subject to orientation conventions. The class
b is now the obstruction associated to the bundle of principal
orbits. Given two manifolds with matching invariants it is
also clear that we can step-by-step construct an equivariant

diffeomorphism between them.

Remark: when € = 0; -M is specified by {-b—r;(ol,g);

(al I al‘sl)---(arr OLr'Br)}-

Example: M3 = (D 2 & Sl) u (D 2 x Sl), where (a) F is the
1 1 F 2 2

diffeomorphism of the common boundary defined by the matrix

(:; ?), (b) Slacts trivially on D12 and by rotation on Si1

Then F is equivariant (exercise) and the action has no
exceptional orbits. The manifold M3 coincides with the lens
space L3(—m, 1) = L3(m, m-1) and the orbit invariants are
{—m;(ol,O)}. The reader may find this clearer having read
the section below on the fundamental group, when it will also
emerge that the same space may correspond to more than one
family of orbit invariants. Obviously two spaces may be

diffeomorphic without being equivariantly diffeomorphic.

Motivated by the classification theorem 1.3 for
pairs (M3,Sl) we recall the original definition of a Seifert
Manifold as a manifold M3 which (a) decomposes into a

collection of simple closed curves (called fibres), in such a
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way that each point belongs to one and only one fibre and
(b) each fibre has a tubular neighbourhood N, consisting of
fibres, such that N = D2 x Sl/Z/u with the cyclic group Z/u

acting as in the discussion of exceptional orbits.

Such a manifold is the total space of a Seifert bundle
- these are defined analogously to fibre bundles, except that
the local product structure must be weakened to allow orbit
spaces like N above. The coordinate transformations are given
by maps Yij ; gin gj -+ G as usual, which are compatibli with
the action of the finite "isotropy groups"” Gi < G on Di x F,
A good reference for the general theory is [Ho]; 1in our case
F = S! and G = Top(St). The reduction of the structural group
to some closed subgroup H of G is possible via the construction
of a section of the associated Seifert bundle with fibre G/H -
here, since the inclusion i : O(2)cﬁ>Top(Si) is well-known to
be a homotopy equivalence, M3 can be described as a bundle
with 0(2) as a structural group. Note that Seifert's

condition (b) implies that each finite isotropy group Gi is

already contained in 0(2).

The classification theorem extends to cover this
wider class of examples. The only new ingredient is that 0(2)
contains reflections of the generic fibre, hence along some
non-trivial curve in M* the fibre may reverse its orientation.
As in other contexts this phenomenon is described by a
homomorphism w : w M* > Z/2. Among others we now obtain the

1

subclass n, : M* is non-orientable, all generators of
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10

T.,M* reverse orientation and hence the total space M is

1
orientable. Up to 0(2)- diffeomorphism a manifold with
€ = n2 is specified by the orbit invariants

1 v —
{b ; (ny,g)sla”,B8) .. (a ,Br)} , be 2,0« Bj < aj’(o‘j'sj)_'l’

It is important to understand this subclass, because it plays

an important role in Chapters III and IV below.

Fundamental groups. In terms of the notation already

introduced 1r1(M) has a presentation as follows:

.a. b,...ab M* orientable
171 g g
Generators: h, 9 , g9....9 {
© 1 r vl...vg M* non-orientable.
Relations: a.ha‘_l = h
i1
N (o)
b.h b, = h
i i
_ m(n.) = 1, M non-orientable
Vihvi . ﬁ? 1
q(nz) = 1, M orientable
qjh = hqj, J=1l,...,r.
(these are the commuting relations.)
<3 8.
.3 =nl=n
qJ

(Geometrically the meridian m equals ag + B8h.)

qo(ql...qr[al,blj...[ag,bg]) =1 or

qg (g,...q v2v2..v2)=l
o' ?1° " "1 "17°° g
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