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1. Introduction. 

L. J. Rogers' paper (Rogers; 1894) which contains the 

Rogers-Ramanujan identities together with their proof was ignored for 

20 years before Ramanujan came across it while leafing through old 

volumes of the Proceedings of the London Mathematical Society. In the 

interim, Ramanujan had discovered the Rogers-Ramanujan identities 

empirically, and they were making the rounds as major unsolved 

problems (cf. Hardy; 1940, p. 91). This is undoubtedly one of the 

very few times that a set of significant unsolved problems was solved 

20 years before it was posed. 

The most obvious reason Rogers' paper lay buried is that it 

is page after page of q-series identities with the Rogers-Ramanujan 

identities sneaking past in mild disguise on page 10 of this tour de 

force. 

As more discoveries were made, the subject became even less 

readable. The Rev. F. H. Jackson was one of the early pioneer q-series 

researchers. His papers also read much like Rogers'. It is not 

surprising to read in Jackson's obituary (Chaundy (1962)); "Once (with 

a whimisical smile one imagines) he [Jackson) recounted the occasion of 

his quarrel with our Society [the L.M.S.): he had read a paper when 

someone remarked: 'Surely, Mr. President, we have heard all this 

before.' He strode from the room and never darkened our pages again." 

As it turned out this critical remark was directed at what was, in 

fact, Jackson's most valuable paper. Again the result was one 

equation among many which were indistinguishable to the outsider. 
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These incidents point up one of the main difficulties in 

presenting results on q-series to a wide audience. While there have 

been interesting interactions of this subject with physics (Baxter; 

1980, 1982 or Andrews et al.; 1984), transcendental number theory 

(Richmond and Szekeres; 1981), group theory (Lusztig; 1977 or Andrews; 

1977, 1984 ), and additive number theory (Andrews; 1972), nonetheless 

a paper like Slater's compendium of Rogers-Ramanujan type.identities 

(Slater; 1952) leaves the impression that it is impossible to have 

any idea of what is really going on. 

With this background we turn to Ramanujan's "Lost" Notebook 

(cf. Andrews; 1979 or Rankin; 1982). This document contains over 600 

unproved results of which at least two thirds are q-series identities. 

Again the superficial sameness of these results leaves one daunted. 

Having thus criticized some very fine mathematicians, I 

hope I will be forgiven if I fail to provide the Olympian overview 

which you are probably expecting. I do hope to suggest an approach 

to increasing understanding. In particular I want to describe some 

means by which one might hope to gain insight about a series like 

n n2 3· 2n-l 
(-1) q (l-q)(l-q ) ••. (l-q ) 

2 2 4 2 2n 2 
(l+q ) (l+q ) .•. (l+q ) 

(1.1) 
n=O 

for example. I choose this example because it appears prominently in 

Ramanujan's "Lost" Notebook, and I devoted a lengthy paper to a study 

of it and several related series (Andrews; 1981a). Indeed I gave 

the first 36 coefficients of its Maclaurin series expansion (Andrews; 

1981a, pp. 44-45). As is clear from my comments in Section 5 of that 

paper, I hadn't the least notion of any reasonable combinatorial 

significance of this series. At least the methods I describe herein 

will easily yield a straightforward combinatorial interpretation of 

(1.1) (cf. Section 7). 

Section 2 of this paper will provide a general setting for 

series of this type. In Section 3, we shall describe some means to 

fit various q-series into this framework. The remainder of the paper 

considers applications of these ideas to some of the more 
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incomprehensible q-series. Among the topics covered are all the 

classes of mock theta functions given in Ramanujan's last letter to 

Hardy (Ramanujan; 1927). Also in Sections 6 and 7 we examine two 

classes of functions that also appear in the "Lost" Notebook. We then 

show how to derive the Rogers-Ramanujan type identities given in 

Andrews (198lb) for Regime II of Baxter's hard hexagon model. 

2. The Combinatorial Setting. 

Part of the astonishing nature of Ramanujan's genius lies in 

his ability to find important formulas and intricate relationships 

without possessing either a related general theory or even the results 

in question in full generality (Hardy; 1940, p. 14). 

The value of generality in this subject is immensely 

important. The only proofs of the Rogers-Ramanujan identities with no 

generality are Schur's incredibly brilliant and intricate combinatorial 

arguments (Schur; 1917) and the extension of Schur's treatment to a 

bijective proof (Garsia & Milne; 1981). In contrast, Watson (1929) 

gives a proof in such great generality that he only needs to base his 

arguments on the fact that two polynomials of degree n agreeing at 

n+l values must be identical. 

The introduction of some generality is the key here. In 

effect we shall extend each function of the one variable q to a 

function of two variables. 

Definition 1. A Ramanujan statistic is an ordered pair 

(p,S) where S is a subset of the set of all partitions of all 

nonnegative integers and p is a nonnegative arithmetic function on 

S with the condition that p-l(n) is a finite set for each 

nonnegative integer n. 

(p ,S) is 

Definition 2. The RS-polynomial for the Ramanujan statistic 

L 
tTES 

P (11)~n 

a(11) 
q , 

where a(11) is the integer partitioned by 11. 
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Definition 3. The RS-generating function for the Ramanujan 

statistic (p,S) is 

(2.2) F(p,Slq,t) = 
00 

Z 
n=O 

Definition 4. Let P(S;n) denote the number of partitions 

of n that lie in S. 

Definition 5. Let D(p,S;n) denote the number of 

partitions rr(ES) of n for which p(rr) is even minus the number of 

those for which p(rr) is odd. 

(2.3) 

(2.4) 

(2.5) 

Lemma 1. For Iql < 1, 

Z P(S;n)qn = lim (l-t)F(p,Slq,t), 
n=O t-+l 

Z D(p,S;n)qn = lim (l-t)F(p,slq,t). 
n=O t;----l + 

Proof. We note that by Definition 1, 

Z .P(S;n)qn 
n;;;O 

lim (l-t)F(p,Slq,t), 
t-+l-

by Abel's lemma (Andrews, 1971, p. 190). 

(2.6) Z D(p,S;n)qn po(p,Slq) 
rgO 

00 n I + Z (-1) (p (p,Slq)-p l(P'S q)) 
n n-

n=l 

lim (l-t)F(p,Slq,t). 

t->-l+ 

The convergence in each instance is guaranteed by the fact that the 

Pn(p,Slq) are polynomials with nonnegative coefficients and for each 

j the coefficient of qj in p (p,Slq) is bounded by the total 
n 

number of partitions of j and is fixed for n>nO(j) [Definition 1].D 

In our applications we shall find that (2.3) and (2.4) are 

often our starting points. It also happens that F(p,Slq2,q) or 

F(p,Slq,q) arise. I have not been able to interpret nicely these 

functions in general; however it is possible to do so in many specific 
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applications. Of course, if we define for example 
00 

(2.7) ~ 

n=O 

then clearly 

n I 2 T (p,S;n)q "= F(p,S q ,q), 
n 

T (p,S;n) 
n 

is the number of solutions of p(rr)+2o(rr)< n, 

so this at least provides some general combinatorial significance 
2 for F(p,Slq ,q). F(p,Slq,q) can be similarly interpreted. 

3. Determination of Ramanujan Statistics. 

We are assuming that the Ramanujan statistic is not provided 

for us ab initio. Instead we start with series like 

(3.1) 

or 

(3.2) 

or 

(3.3) 

where 

(3.4) 

r r r ra(~) n 
(Al;q )n(A2;q )n···(As;q )nq z 

(qr;qr) (Bl;qr) ••• (B.;qr) 
n n J n 

n=O 

00 

~ 

n=O 
r r r r 

(-q ;q ) (-Bl;q ) ••• (-B.;q ) 
n n J n 

~ 
n=O 

r 2r r 2r r 2r 
(q ; q ) +1 (Blq ; q ) ••• (B. q ; q ) 

n n J n 

n-l 
(a;q)n = (a)n = (l-a)(l-aq) .•• (l-aq ). 

Often we find in the literature and especially in Ramanujan's work 

instances of (3.1)-(3.3) intertwined in various identities. 

(3.5) 

If we define 

r ( 1' ••• 'As;r,a;q,z;, 
=r(q,t) 

Bl , ••• ,Bj 
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'" L 
n=O r r r 

(t;q) +l(Blt;q ) ••• (B.t;q ) n n J n 

lim (l-t)F(q,t) is (3.1), lim + (l-t)F(q,t) 
t-+l- t-+-l 

is then we note that 

(3.2) and F(q2, qr) is (3.3). Thus our F(q,t) fits in with the form 

of the results given in Lemma 1. 

Lemma 2. Let F(q,t) be given by (3.5) with a a positive 

integer. Then the coefficient of t n in the expansion of F(q,t) is 

a polynomial in the Ai' the Bi , z and q. Furthermore F(q,t) 

satisfies the following simple non-homogeneous q-difference equation: 

(3.6) (l-t)(l-Blt) ••• (l-Bjt)F(q,t) 

(1-Bl t)(1-B2t) ••• (1-Bj t) 

a r 
+(l-Alt) ••. (l-Ast)t z F(q,tq). 

Proof. The polynomial nature of the coefficients follows 

immediately from the two classical formulas (Andrews; 1976, p. 36) 

1 '" r+:-l] Am, (3.7) (A;q)n = 
L 

m=O 

[:] (_A)mq (~), n 
. (3.8) (A;q)n = L 

m=O 

where rrsl UU is the q-binomial coefficient or Gaussian polynomial given 

by 

(3.9) [~] 
q 

{

l_qr) (l_qr-l) ••• (l_qr-s+l) 
s s-l ' 

[~] = (l-q ) (l-q ) ••• (l-q) 

o otherwise. 

To see (3.6) we observe that 

(3.10) 
1 

F(q,t) = l-t 

+ Z r r r 
n=l (t;q ) +l(Blt;q ) ••• (B.t;q ) n n J n 

r, S <: 0 
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= _1_ + 
l-t 

a 
(l-Alt) ••• (l-Ast)t z 

(l-t) (l-Blt) ••• (l-Bjt) 

where the last line follows by replacing n by n+l in the sum. 

Identity (3.6) is merely (3.10) with denominators cleared. 0 

The steps in applications are now clear 

l. Determine F(q,t) from given instances of (3.1)-(3.3) . 

2. Examine lim - (l-t)F(q,t) in order, if possible, to 
t->-l 

identify it as the generating function for partitions lying·in some 

set S. (Often more than one S may turn up). 

3. Study the polynomial coefficients for F(q,t) described 

in Lemma 2. The object is to identify them as RS-polynomials. 

Unfortunately I have no general wisdom about Step 3. In 

practice however there seem to be two possible occurrences: 1) It 

may be possible to find a simple representation for F(q,t) which 

transparently yields the relevant Ramanujan statistic. 2) There may 

be known families of polynomial generating functions related to the 

set of partitions S found in Step 2; if so it may be possible to 

identify p from these polynomials. 

4. The Third Order Mock Theta Function. 

We shall now consider two of the principal third order mock 

theta functions (Watson: 1936, p. 62): 

(4.1) 

and 

(4.2) 

f(q) 

w(q) 

1 + 

00 

Z 
n=O 

2 
n 

00 --L-
z 2 ' 

n=l (-q)n 

22 
(q;q )n+l 

Following the guidance of Section 3, we define 
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(4.3) M83 (q, t) 

and we note 

(4.4) f(q) = lim +(1-t)M83 (q,t), 
t-+-l 

(4.5) w(q) 
2 = M8 3 (q ,q)/(l-q). 

To find our relevant set of partitions we observe that 

(4.6) lim (1-t)M83 (~, t) 
t-+l -

2 
n 

~ _q_ = _1_ = ~ 

p(n)qn. ~ ~ 

n=O (q)2 (q)~ n=O n 

This last set of identities is often attributed to Euler (Andrews; 

1976, p. 21); however, I believe that this q-series first arose in 

Jacobi's work (Jacobi: 1829, §64). We now see from (4.6) that S=P, 

the set of all partitions of all nonnegative integers. 

To determine p we apply a transformation to M83 (q,t). 

Namely 

(4.7) 
1 ~ 

M8 3 (q,t) = l-t lim ~ 
x-->O n=O 

n = ~ __ t_ 

n=O (tq)n 

(by Sears; 1951, p. 174, eq. (10.1) with 
-1 p=q. a=b=x ,e=f=tq, c=q, 

and x-+O). This last expression is so easy to interpret that we see 
MN immediately that the coefficient of t q in (4.7) is the number of 

partitions of N with the largest part plus the number of parts ~M. 

Hence in this instance 

p(rr) = gn(rr) , 

where gn(rr) denotes the largest part plus the number of parts (the 

choice of notation refers to the gnomon of the Ferrers graph of rr). 

Consequently we can now easily identify both f(q) and 

(l-q)w(q) as generating functions of partition functions: 
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Theorem 1. Let f(q) and ro (q) be given by (4.1) and 

(4.2) • Then 
00 

D(gn,P;n)qn, (4.8) f(q) l: 
n=O 

and 

(4.9) (l-q)ro(q) = ~ Q(n)qn, 
n=O 

where D(gn,P;n) is defined in Definition 5 and in this instance is 

the total number of partitions rr of n with gn(rr) even minus the 

number with gn(rr) odd. The partition function Q(n) is the number 

of partitions of n into odd parts where the largest part is at most 

one more than twice the number of ones. 

Remark. The result on f(q) is implicit in a forthcoming 

book by N. J. Fine (1985). 

9 

Proof. Equation (4.8) follows immediately from (2.4), (4.4) 

and our comments following (4.7). From (4.5), we see that 

(l-q)ro (q) 
2 = M9 3(q ,q) 

n 
00 

l: 9. (by(4.7» 3 2 
n=O (q ;q )n 

00 n 
l: Q(n)q • 0 

n=O 

Corollary. For n> 0, 

n-l r- l] j (4.10) p (gn,Piq) = l: j q. 
n j=O 

Remark. Equation (4.10) identifies the RS-polynomial in 

this instance as a special case of the Rogers-Szego polynomials 

(Andrews; 1976, p. 49). 

Proof. By (4.7) and (2.2) 

(4.11) 
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Z t m 
(tq) 

m=O m 

00 00 m [nttr~ tjqj 1 + 1: t 1: (by (3.7) 
m=l j=O 

00 
n-l 

[n-lJ j 1 + 1: t n 1: j q. 
n=l j=O 

Comparing coefficients of t n in the extremes of (4.11), we obtain 

(4.10) . 

Most of the other third order mock theta functions can be 

treated in a similar manner. However for the most part the combina­

torial interpretations of them are' straight forward and are covered 

well in N. J. Fine's soon to be published book (Fine; 1985). 

5. The Fifth and Seventh Order Mock Theta Functions. 

o 

We lump together the fifth order mock theta functions with 

the seventh order functions. These families first arose in Ramanujan's 

last letter to Hardy (see Ramanujan; 1927, pp. 354-355). G. N. Watson 

(1937) proved most of the assertions about the fifth order mock theta 

functions. There are alternative combinatorial interpretations 

available for the fifth order mock theta functions. We shall 

concentrate on the one which serves as a prototype for the seventh 

order mock theta functions and other applications. To this end we 

define an arithmetic function PA;a,b on all partitions 11 by 

(5.1) PA;a,b(11) = max(A·l(11) - a,A· #(11) - b), 

where l(11) is the largest part of 11 and #(11) is the number of 

parts of 11. 

us here are 

(5.2) 

The two fifth order mock theta functions of most interest to 

(G. N. Watson; 1937, p. 277) 

2 
n 

Z -q­
n=O (-q)n 
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