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Foreword to volume 11, with an example for
the end of volume 1

Art is long and life is short. More than four years elapsed between
completion of the MS for volume I and its publication; a good deal of
that time was taken up with the many tasks, often tedious, called for by
the production of any decently printed book on mathematics.

An attempt has been made to speed up the process for volume II. Three
quarters of it has been set directly from handwritten MS, with omission
of the intermediate preparation of typed copy, so useful for bringing to
light mistakes of all kinds. I have tried to detect such deficiencies on the
galleys and corrected all the ones I could find there; I hope the result is
satisfactory.

Some mistakes did remain in volume I in spite of my efforts to remove
them; others crept in during the successive proof revisions. Those that
have come to my attention are reported in the errata immediately following
this foreword.

In volume I the theorem on simultaneous polynomial approximation
was incorrectly ascribed to Volberg; it is almost certainly due to T. Kriete,
who published it some three years earlier. L. de Branges’ name should have
been mentioned in connection with the theorem on p. 215, for he gave
(with different proof) an essentially equivalent result in 1959. The
developments in §§A and C of Chapter VIII have been influenced by earlier
work of Akhiezer and Levin. A beautiful paper of theirs made a strong
impression on me many years ago. For exact references, see the
bibliography at the end of this volume.

I thank Jal Choksi, my friend and colleague, for having frequently helped
me to extricate myself from entanglements with the English language while
I was writing and revising both volumes.

Suzanne Gervais, maker of animated films, became my friend at a bad
time in my life and has constantly encouraged me in my work on this book,
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from the time I first decided I would write it early in 1983. Although she
had visual work enough of her own to think about, she was always willing
to examine my drawings of the figures and give me practical advice on
how to do them. For that help and for her friendship which I am fortunate
to enjoy, I thank her affectionately.

One point raised at the very end of volume I had there to be left
unsettled. This concerned the likelihood that Brennan’s improvement of
Volberg’s theorem, presented in article 1 of the addendum, was essentially
best possible. An argument to support that claim was made on pp. 578-83;
it depended, however, on an example which had been reported, but not
described, by Borichev and Volberg. No description was available before
Volume I went to press, so the claim about Brennan’s improvement could
not be fully substantiated.

Now we are able to complete verification of the claim by providing the
missing example. Its description is found at the end of a paper by Borichev
and Volberg appearing in the very first issue of the new Leningrad
periodical Algebra i analiz. We continue using the notation of the
addendum to volume I.

Two functions have to be constructed. The first, h(¢), should be decreas-
ing for 0 < ¢ < oo and satisfy Eh(€) = 1, together with the relation

J.I logh(§)dé = oo.
0

The second, F(z), is to be continuous on the closed unit disk and %, in
its interior, with

o)

| < exp(—hogll/lz))) Iz < 1,
Z

[FEe®) > 0 ae,

and

'[ log|FE¥)|d$ = -—oo.
The function F(z) we obtain will in fact be analytic in most of the unit
disk A, ceasing to be so only in the neighborhood of some very small
segments on the positive radius, accumulating at 1. The function
h(log(1/x)) will be very much larger than 1/log(l/x) for most of the
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Example for addendum to volume I xiii

x € (0, 1) contiguous to those segments.
Three simple ideas form the basis for the entire construction:

(1) In a domain & with piecewise analytic boundary having a 90°
corner (internal measure) at {, say, we have

wJ(I’ Z) < K:lllz» zZ € év;
for arcs I on 0& containing { (see volume I, pp 260-1);

(2) The use of a Blaschke product involving factors affected with
fractional exponents to ‘correct’, in an infinitely connected
subdomain of A, a function analytic there and multiple-valued,
but with single valued modulus;

(3) The use of a smoothing operation inside A, scaled according to
that disk’s hyperbolic geometry.

We start by looking at harmonic measure in domains § = A ~ [a, 1],
where 0 < a < 1. According to (1), if # > 0 is small (and < 1—a ), we
have

ws(E,, 0) < O@?)

for the sets E, = [1—», 1] U I,, where I, is the arc of length  on
the unit circle, centered at 1. This is so because d6 has two (internal)
square corners at 1 that contribute separately to harmonic measure. (The
slit [a, 1] can be opened up by making a conformal mapping of & given
by z — ,/(a— z); when this is done the two corners at 1 are separated
and they remain square. ) Suppose that, for some given a € (0, 1), we fix
an n > 0 small enough to make w,(E,, 0)/n less than some preassigned
amount. Then, if we put ¥ = A ~ [a, 1 —1], we will have, by simple
comparison of wg(l,, z) and we(E,, 2) in &,

(Dg(l,,, 0)/’7 < (DJ(E,,, 0)/'7

This relation is taken as the base of an inductive process. Beginning
with an a, > 2/(2+./3) and < 1 (we shall see presently why the first
condition is needed), we take a b;, a; < b; < 1, so close to 1 as to
make

ng (Il! O) < 1

114} 2

for 4, = A ~ [ay, b,] and the arc I, of length 1 —b; on A cent-
ered at 1. One next chooses a,, b, < a, < 1, in a way to be specified
later on (a, will in fact be much closer to 1 than b,), and then takes
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b,, a, < b, < 1, near enough to 1 to have

(Dgz(Iz, 0) < 1
|12] 4

and
< 34

for 4, = A ~ [a,, b;] and the arc I, of length 1 — b, on JA centered
at 1. Continuing this procedure indefinitely, we get a sequence of segments

J'l = [an’ bll] b

where b, < a,.; < b,,; < 1, and nested arcs I, of length 1 — b, on
d4A, each centered at 1, with

w@n(lm 0) < _1_
Hal 2
for the corresponding domains 4, = A ~ J,, and

LI < 3,4l
Take now

@=A~J1~J2~J3~.

then, since 2 is contained in each ¥,, the principle of extension of
domain tells us that

el 0)  _  wg,(n 0 < 1
[l 11, 2n

Our first ingredient in the formation of the desired F(z) is a function
u(z) positive and harmonic in 2. Let T,(9) be periodic of period 2=, with

1
(9 = 1
) II,.I(

_ 219
Hal

+
> for — <3<

The graph of T,(9) for | 9] < = is an isosceles triangle of height 1/{I,|
with its base on the segment {|9| < |I,]/2} corresponding to the arc I,.
We have

x 1
J (948 = -

-=
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while
= . (I, O 1
T.(9dwsed, 0 < 229 L
v -z IInl 2"
SO
fr © .
Y. T.(9) dws(e®, 0) <  oo.
J-x n=1
although
Z T,$Hd3 =
J-x n=1

For z € 2, we put

L ©

uz) = J Y. T.(9) dweole®, 2) ;
-x n=1

the integral on the right is certainly finite by the third of the preceding

four relations and Harnack’s inequality, so u(z) is harmonic in 2 and

u(zy > 0

there. For 0 < |9] < =, Y2, T.(9) is continuous (and even locally
Lip 1 !), so at these values of 9,

uz) — S T(9H asz — €
n=1
from within 2. (It is practically obvious that the corresponding points
e’ are regular for the Dirichlet problem in 2 — in fact, all points of 82
are regular.) Taking u(e'®) equal to 22 T,(9), we thus get a function
u(z) continuous in A ~ {1}, and we have

j ue)ds = oo.

The function u(z) has, locally, a harmonic conjugate ii(z) in 2. The latter,
of course, need not be single-valued in the infinitely connected domain 2;
we nevertheless put

flz) = e wE@*idE)
for z € 2, obtaining a function analytic and multiple-valued in 2 whose

modulus, e ~*?), is single-valued there. If €% # 1, any given branch of ii(z) is
continuous up to €', because u(e”) = Y=, T,(t)is Lip 1 for ¢ near 9.
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(To verify this, it suffices to look at u(z) and #(z) in the intersection of 2
with a small disk about e'® avoiding the J,; if there is still any doubt,
map that intersection conformally onto A.) It therefore makes sense to
talk about the multiple-valued, but locally continuous boundary value
f(€%) when €' # 1; the modulus | f(e'%)] is again single-valued, being
equal to exp( — u(e'®)). By the previous relation, we have

Jn log|f(®)d$ = —oco.

It is now necessary to cure the multiple-valuedness of f(z); that is where
the second of our ideas comes in. In constructing the J, = [a,, b,] and
the arcs I,,, there is nothing to prevent our choosing the a, so as to have

il(l—a,.) < ©;

we henceforth assume that this has been done. ( A much faster convergence
of a, to 1 will indeed be required later on.) Our condition on the aq,
guarantees that the sum

©
Y ulo
n=1

z—a,

1—a,z

converges uniformly in the interior of A ~ (J,{a,} =2 2 whenever
the coefficients g, are bounded. If 0 < y, < 1, that sum is then equal
to a function v(z), harmonic and < 0 in 9. For the latter, there is a
multiple-valued harmonic conjugate d(z) defined in 2, and we have finally

a function
i < (a,—z \"
b 7 = ev(:)-*-w(:) —
@) 1:[ <1 —a z)
analytic but multiple-valued in 2. The modulus |b(z)] = e"@ is

single-valued in 2.

The points a, accumulate only at 1, so any branch of b(z) is continuous
up to points €'¥ # 1 of the unit circle. For such points, |b(e'%)| =
and of course [b(z)] € 1in 2, since v(z) < O there.

By proper adjustment of the exponents y, we can make the product
b(z) f(z) single-valued in 2, and hence analytic there in the ordinary sense.
Consider what happens when z describes a simple closed path in the
counterclockwise sense about just one of the slits J, = [a,, b,]. Each
given branch of the harmonic conjugate (z) will then increase by a certain
(real) amount A,, independent of the branch. At the same time, every
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branch of #(z) = argh(z) will increase by 2znu,. We take p, between 0
and 1 so as to make

2np, — A,

an integral multiple of 2w ; this is clearly possible, and, once it is done, every
branch of arg(b(z)f(z)) = ©(z) — i(z) increases by that amount when
z goes around a path of the kind just mentioned. Then the product b(z)f(z)
just comes back to its original value! Choosing in this way a value of
W, 0 < g, < 1, for every n, we ensure that b(z) f(z) is single-valued in
2. Note that we have

b2)f(2)) < e™ < 1, ze9,
and, since |b(e'¥)] = 1fored # I,

IbE) ) = 1/ > 0, ¢ £ 1L
Because the product b(z) f(z) is analytic in &, we have there

7

— b2 fz) = 0O

0z

the expression on the left may therefore be looked on as a distribution in
A, supported on the slits J, of A ~ 2. In order to obtain a €, function
defined in A, we smooth out b(z) f(z); that is our third idea. The smoothing
is scaled according to the square of the gauge for the hyperbolic metric
in A, i.e, like 1/(1 —|z])%

Taking a €, function Y(p) = O supported on the interval [1/4, 1/2]
of the real axis, with

12 1
J Ylp)odp = >
0 714

we put, for zeA,

lz—{] ) HOS©)
G(z = déd
@ Hf((l—lzl)z =z Y

{writing, as usual, { = &+in).

The first thing to observe here is that the expression on the right makes
sense. Although b({)f({) is defined merely in 2, the slits J, making up
A ~ 2 are of planar Lebesgue measure zero, so we only need the values
of the product in 2 in order to do the integral. The second observation is
that G(z) is €, in 2. As a function of {, ¥({z—|/(1 —|z|)?) vanishes
outside the disk [{ —z| < (1 —|z|)* which, however, lies well within A
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forzeA,since then|z| + $(1 —|z|)* < 1. We may therefore differentiate
under the integral sign with respect to z or Z as often as we wish, ¥(p)
being ¥, (its identical vanishing for p near 0 helps here), and |b(0) f({)}
being < 1 in 9. In this way we verify that G(z) is €, in A, and get
(practically ‘by inspection’) the crude estimate

3G (z)
8z

const.
T

As for G(2), just an average of the function b({) f({), we have
G@) <1, |zl < L

The third thing to observe is that G(z) is actually analytic in a fairly
large subset of A. Because y(p) vanishes for-p > 1/2, the integration in
the above formula for G(z) is really over the disk

A, = {: 10—z < (1-121)%)

which, as we have just seen, lies in A when |z| < 1. Suppose that A,
touches none of the slits J,. Then A, = 2 where b({) f({) is analytic and,
writing { = z+ re', we have

6@ = ~[u—l:I)z/zJ'n b(z + re’®) f(z + re /(1 —|2)?) rd&drd.
° B (1~lz)

Using Cauchy’s theorem to perform the first integration with respect to
9 and then making the change of variable r/(1 —|z|)> = p, we obtain

the value 2nb(2) f(2) [o"*Y(p)pdp = bl2)f(2), ie.,

G(z) = b(2)f(2) if A, c 2.
When A. = 9, the disks A, also lie in & for the 2’ belonging to some
neighborhood of z; we thus have G(z') = b(z')f(2") in that neighborhood,
and G(z') (like b(2')f(z") ) is then analytic at z. For the z in A such that
A. S 2, we therefore have

9G(z)

0z

= 0

although, for the remaining z in the unit disk, only the above estimate on
0G(z)/0Z is available. It is necessary to examine the set of those remaining z.

They are precisely the ones for which A, intersects with some J, We
proceed to describe the set

B, = {zeA: A, nJ, # &}
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Write for the moment J, = [a, b], dropping the subscripts on a, and b,.
If A, is to intersect with [a, b], we must have |z| > 2—./3. Indeed, q,
as one of the a,, is > a, which we initially took > 2/(2 +./3), while A,
lies in the disk {|{] < |z] + (1 —|z|)*} whose radius increases with
|z|. For |z} = 2—./3, that radius works out to 2/(2+./3), so if
lz| € 2—4/3, [a, b] would lie outside the disk containing A,; |z
is thus > 2—./3 for zeB, Now when 2—./3 < |z| < 1,
lz| — 4(1—1z])* > 0,s0 A, is in fact contained in the ring

lz] — $(0 =1z < I < lz| + 3(1—]z])?

(that’swhy a, waschosen > 2/(2 + \/ 3) !). Therefore, if A, intersects with
[a, b], we must have

lz] — 31 =12)* < b,
lz| + 3(1=12])? = a

Both left sides are increasing functions of [z| (for ze A), so these relations
are equivalent to

a <z €V,

where
ad + ¥(1—-a) = a
b — (1-b) = b
In (0, 1) these equations have the solutions
d = JQa-1,
b = 2-./(3-2b);

for the first we need a > 1/2 but have in fact a > 2/(2 +./3). Using
differentiation, one readily verifies that @' <aand b < b’ < 1.

We see that B, (the set of ze A for which A, intersects with [a, b] ) is
an oval-shaped region including [a, b] and contained in the ring
a < |z| < b';its boundary crosses the x-axis at the points a’ and b'.
When a is close to 1, B, is quite thin in the vertical direction because,
if A, touches the x-axis at all, we must have [Jz| < (1 —|z])*

One can specify the a, and b, so as to ensure disjointness of the oval
regions B,. The preceding description shows that this will be the case if
the rings a, < |z| < b are disjoint, where (restoring the subscript n)

@, = J@a,—1),
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ie, if b, < a,,, forn = 1,2,3,.... It is easy to arrange this in

making the successive choices of the a, and b,; all we need is to have
Gy = @y, + 3(1—a,,)* > b, + $(1=b))>

Here it is certainly true that b, < b, < 1 when 0 < b, < 1; then,
however, the extreme right-hand member of the relation is stili < 1, and
numbers a,,; < 1 satisfying it are available. There is obviously no
obstacle to our making the q, increase as rapidly as we like towards 1;
we can, in particular, have

i (1—a,) < oo.

We henceforth assume that the last precaution has been heeded in the
selection of the a,. The B, will then lie in their respective disjoint rings
a, < |z| < b besides being all included in the cusp-shaped region
|¥z] < 3(1—1|z])* and, of course, in the right half plane. According to
what we have already seen, G(z) is equal to the analytic function b(z) f(2)
for ze A outside all of the B,, so then 0G(z)/0z = 0. Within any of the
B,, we have only the estimate |0G(z)/0Z| < const./(1 —|z|)2

Because of the configuration of the B,, G(z) is continuous up to the
pointsof JA ~ {1}.Indeed, when ze A tends to e'® # 1, it must eventually
leave the region {Rz > 0, |Jz| < 3(1—|z|)*} in which all the B, lie,
and then G(z) becomes equal to b(z)f(z) which has the continuous limit
b(e'®) f(e'®) away from 1 on the unit circumference.

If ze A tends to 1 from outside any sector with vertex at 1 of the form
larg(l—2)] € o, 0 < a < 7/2, we have

G(z) — 0.
To see this, we argue that such z must leave the region [Jz| < 1(1 —|z])%,
making G(z) = b(z)f(z). Then, however,
log|b(z)f(2)] < —u(z) = —j > T.(9) dwg(e', 2),
-x n=1

and it suffices to show that the expression on the right tends to — o0
whenever z — 1 from outside any of the sectors just mentioned. This
is so due to the fact that 3, T,(9) — oo for $— 0, as may be
verified by taking the region

& = A~T12,1] € 2

and comparing harmonic measure for 2 with that for £. By the principle
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of extension of domain, dws(€'?, z) < dwg(e'®, z) for ze&, so we
need only check that

= ©
Y T(9) dwg(e®, z) — o

—-r n=1
as z — 1 from outside any of the sectors in question. That, however,
should be clear. Let the reader imagine that & has been mapped
conformally onto the upper half plane so as to take the vertices of its two
corners at 1 to —2 and 2, say, and then think about how the ordinary
Poisson integral corresponding to the last expression must behave as one
moves towards — 2 or 2 from the upper half plane.

We put finally

Fiz) = cexp(—Kﬁ) G(2)
-2z

for ze A, with ¢ a small constant > 0 and K a large one. The exponential
serves two purposes. It is, in the first place, < 1 in modulus in A and
continuous up to A ~ {1} where it has boundary values of modulus 1.
When z — | from within any sector |arg(l —z)] € o, 0 < a < =n/2,
the exponential tends to zero, making F(z) — 0, since [G(z)] < | in A.
This, however, is also true when z — 1 from outside such a sector because
then G(z) — 0 as we have just seen. Thus,

F(z) — Q0 for z — 1, z€A.

We have already remarked that G(z) is continuous up to A ~ {1}, where
it coincides with b(z)f(z), so we have

F(Z) — 5 ce~Kk cot(9/2) b(ci S)f(eiS)

when ze€ A tends to e/ # 1. Denoting the boundary value on the right
by F(e'%), we have |F(e'%)| = c|f('%)] = cexp(— u(e'?)), and this tends
to zero as $— 0 since u(e'®) = 3=, T,(9) then tends to co. The
Junction F(z) thus extends continuously up to the unit circumference thanks
to the factor exp(— K(1 + 2)/(1 — z)). We have |F(e'%)] = c|f ()| > 0
for e # 1, and

J log|Fe'%) d8 = 2nloge +J log|f(e'%) d8 = - oo.

-n

Since G(z) is €, inside A, so is F(z). The second service rendered by
the factor exp(— K(1 +z)/(1 —z)) is to make OF(z)/0Z small near OA.
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Outside the B,, F(z) (like G(z)) is analytic, so dF(z)/0z = 0. Within any
of the B,, we use the formula

0F(z) _ cexp(—K1+z>aG(_z),
0z 1—z) 0z

which holds because the exponential is analytic in A. The B, all lie in the
right half plane, and in them,

1321 < 31—z < z(1-]z)),

whence
R 14z > const. .
1—z 1—|z|
This makes
F .
0 (-z) < cexp(— g oomst ) BG(-z)
0z 1—|z| .0z

for z belonging to any of the B, As we have seen, the last factor
on the right is < const/(1 —|z|)*> which, for |z| < 1 near 1, is
greatly outweighed by the exponential. Bearing in mind that
log(1/|z]) ~ 1—]z]| for |z| — 1, we see that the constants ¢ and K
can be adjusted so as to have

‘6F(z) < ex (_ 1 )
S TP\ leg @zl

0z
within the B, at least. But then this holds outside them as well (in A,
including in the neighborhood of 0), because dF(z)/0Z = 0 there.

F(z) has now been shown to enjoy all the properties enumerated at the
beginning of this exposition except the one involving the function h(¢),
not yet constructed. That construction comes almost as an afterthought.
Since the sets B, lie inside the disjoint rings a, < |z| < b], we start by
putting h(log(1/iz|)) = 1/log(1/|z|) on each of the latter; in view of
the preceding relation, this already implies that

or()
0z

< exp(—h(log(1/]z])))

throughout A, no matter how h(log(1/|z|)) is defined for the remaining
ze A, because the left side is zero outside the B,. To complete the definition
of h(¢) for 0 < ¢ < o0, we continue to use h(log(l/|z])) = 1/log(1/]z])
on the range 0 < |z| < a) and then take h(log(1/|z])) to be linear in

© Cambridge University Press www.cambridge.org



http://www.cambridge.org/0521309077
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-0-521-30907-3 - The Logarithmic Integral II
Paul Koosis

Frontmatter

More information

Example for addendum to volume 1 XXiii

|z| on each of the complementary rings
b, < |z| €a,, n=123....

The function h(£) we obtain in this fashion is certainly decreasing
(in £ ); h(log(1/|z])) is also > 1 for [z] > b/, because b} > a; >
2/(2+\/3) > 1l/e. h(log(1l/|z|)) is moreover = 1/log(1l/|z|) on the
complementary rings, for 1/log(1/x) is a convex function of x for
1/e* < x < l,and b > 1/e* In terms of the variable ¢ = log(1/|z|)
we therefore have

Ehg) = 1, 0< &< oo

The trick in arranging to have

1
f logh(¢)dé = o
0

is to use linearity of h(log(1/x)) in x on each interval b, < x < a,,,, to
get lower bounds on the integrals

log(1/by)

j log h(&)dE.
log(1/an +1)

We have indeed h(&) > 1 for ¢ < log(l/b)) < log(l/b}) and

h(log(1/a;,,,)) = 1/log(1/a,.,), so the linearity just mentioned makes

hE) = 1)2log(l/a,,,) for (b, +a,.,)2 < e ¢ < a,, ie, for

log(1/a,,,) < ¢ < log(2/(b, +a, ., ). The preceding integral is therefore

2a’ 1
= log(_la";ll> - log* (—,>’
@y tb, 2log(1/ay )

since logh(£) is > 0 on the whole range of integration. For any given
value of b, 0 < b, < 1, the last expression tends to co as
a,,, — 1! We can therefore make it > 1 by taking a,,, > b,
close enough to 1, and that can in turn be achieved by choosing
aye; = a,,, + (1 —a,,,)? sufficiently near 1. We therefore select the
successive a, in accordance with this requirement in carrying out the
inductive procedure followed at the beginning of our construction. That
will certainly guarantee that b, < a),, (which we needed), and may
obviously be done so as to have X2 ,(1—a,) < oo (by making
the a, tend more rapidly towards 1 we can only improve matters ).

Once the a, have been specified in this way, we will have

log{1/by)
J logh()d¢ = 1
1

og(1/an+1)
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for each n, and therefore

1
J logh{§)dé = co.
0
Our construction of the functions F(z) and h(£) with the desired properties
is thus complete, and the gap in the second half of article 2 in the addendum
to volume I filled in. This means, in particular, that in the hypothesis of
Brennan’s result ( top of p. 574, volume 1), the condition that M(v)/v'/? be
increasing cannot be replaced by the weaker one that M(v)/v'/? > 2.

January 26, 1990
Outremont, Québec.
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Location Correction
page 66 At end of the theorem’s statement, words in roman

should be in italic, and words in italic in roman.

In running title, delete bar under second M, but
keep it under first one.

In heading to §E, delete bar under M, in first and
third ¥x({M,}) but keep it in second one.

In statement of theorem, change determinant to
determinate.

In displayed formula, change w* to w*.

In displayed formula | P(x,)|*v({x,}) should stand
on the right.

The sentence beginning ‘Since, as we already’

should start on a new line, separated by a horizontal

space from the preceding one

In last displayed formula, change x” to x"

Add to running title:
Comparison of €w(0) to €w(0+)

In the last two displayed formulas replace (1 — «?)
throughout by |1 — «?|.

Change b? in denominator of right-hand expression
to b2.

Change F(z) to F(Z).

In figure 69, B, and B, should designate the lower
and upper sides of 2, not 2.
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page 379, line 8 Change comma after ‘theorem’ to a full stop, and

from bottom capitalize ‘if”.

page 394, line 3 Change y, to y,.

page 466, last line  Delete full stop.

page 563, line 9 Change ‘potential’ to ‘potentials’.

page 574, line 9 Delete full stop after ‘following’.

from bottom

page 604 In running title, ‘volume’ should not be capitalized.

page 605 In titles of §C.1 and C.4 change ‘Chapter & to
‘Chapter VIII'.
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