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IX

Jensen'’s formula again

The derivations of the two main results in this chapter — Pdlya’s gap
theorem and a lower bound for the completeness radius of a set of
imaginary exponentials —are both based on the same simple idea:
application of Jensen’s formula with a circle of varying radius and moving
centre. I learned about this device from a letter that J.-P. Kahane sent
me in 1958 or 1959, where it was used to prove the first of the results just
mentioned. Let us begin our discussion with an exposition of that proof.

A. Pélya’s gap theorem
Consider a Taylor series expansion

fw) = ia,,w"
0

with radius of convergence equal to 1. The function f(w) must have at
least one singularity on the circle |w| = 1. It was observed by Hadamard
that if many of the coefficients a, are zero, i.e., if, as we say, the Taylor
series has many gaps, f (w) must have lots of singularities on the series’ circle
of convergence. In a certain sense, the more gaps the power series has, the
more numerous must be the singularities associated thereto on its circle of
convergence.

This phenomenon was studied by Hadamard and by Fabry; the best
result was given by Polya. In order to formulate it, Polya invented the
maximum density bearing his name which has already appeared in
Chapter VL.

In this §, it will be convenient to denote by N the set of integers = 0 (and
not just the ones > 1 as is usually done, and as we will do in §B!). If Z = N,
we denote by ng(t) the number of elements of Z in [0, t], t=0. The Pélya
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2 IX A Polya’s gap theorem

maximum density of Z, studied in §E.3 of Chapter VI, is the quantity
—ng(d
Dt = lim (um pu)
is1-\ row (1— Ay

We have shown in the article referred to that the outer limit really does
exist for any Z, and that D¥ is the minimum of the densities of the measurable
sequences containing Z. In this §, we use a property of D¥ furnished by
the following

Lemma. Given ¢ >0, we have, for p = er,

ng(r + p) — ng(r) < Di+s

p

when r is large enough (depending on ¢).

Proof. According to the above formula, if N is large enough and
A= (L+e)™ ',

we will have

ng(r) — ng(4r)

&
(1= br+3

2

for r = R, say. Fix such an N.
When r = R, we certainly have

ng(A7* 1) — ng(A %) &
< D¥+-
(A% 1= 2Ry )

fork = 0,1,2,...,s0

nz(/’--k" ) — ng(r)
A =1

fork=1,2,3,.... Let

&
DX+~
)

p =er = (A N=1r

Then, if k is the least integer such that (A™%*—1)r > p, we have k > N,
s0, ng(t) being increasing,
ng(r + p) — ng(r) < ne(A7* ) —ngr) (A7 =1)r

=

p (A =1y P

e\ A7F—1
< (D;-*-E)}—,_———’H'l—l
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A Pélya’s gap theorem 3

e A7V—1 € €
= ¥4 ”
< (D§+§>}.—N+l_l - (1+8)(N-l)/N _ 1<D}: +2>
when r > R. If N is chosen large enough to begin with, the last number
is < D¥ +e¢. This does it.

Theorem (PoOlya). Let the power series

fw) = 3 aw

nekl
have radius of convergence 1. Then, on every arc of {|w|= 1} with length
> 2nD¥, f(w) has at least one singularity.

Proof (Kahane). Assume that f(w) can be continued analytically through
an arc on the unit circle of length > 2zD, which we may wlog take to
be symmetric about — 1. We then have to prove that D < D¥. We may
of course take D > 0. There is also no loss of generality in assuming D < 1,
for here the power series’ circle of convergence, which does include at least
one singularity of f(w), has length 2x.

Pick any 6 > 0. In the formula

a, = L Sww™""tdw

27

Iwl=e-$
(we are, of course, taking a, as zero for n¢Z, n>=0) one may, thanks to

the analyticity of f(w), deform the path of integration {jw|=¢"?} to the
contour I'y shown here:

Figure 157

The quantity ¢ > 0 is fixed once D is given, and independent of 4.
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4 IX A Pdlya’s gap theorem

In the integral around I';, make the change of variable w =¢™~°, where
s = ¢ + it with r ranging from — 7 to z. Our expression then goes over into

1

2z

Jf(e“)e"’ds = a,

with this path y,:

14 (1 - D)

-7t(1 -D)

(~ ¢~

Figure 158

Write
F(z) = L'[ fle™)e*ds
2ni J,,

so that F(n) = a, for neN (and is hence zero for neN ~X), F(z) is of
course entire and of exponential type. We break up the integral along y,
into three pieces, I, IT and III, coming from the front vertical, horizontal
and rear vertical parts of y; respectively.

On the front vertical part of y;, |f(e™ )] < M, and
le*] < e¥**™1=D¥ (writing as usual z = x + iy); hence

1] < M,,e""““ = Djlyl

On the horizontal parts of y,;, | f(e™ )| < C (a number independent of 6,
by the way), and |e%*| < e®**™! DWWl for x > 0, whence

I} < Ce*mi=2, x>0
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A Pélya’s gap theorem 5

Finally, on the rear vertical parts of y,; |f(e™) < C and
le=| < e™**=W for x >0, making

[TIII| < Ce™=*=bl x>0,
Adding these three estimates, we get
[F(2)] < (M;+C)et*=1=Dbl 4 Ce~ex+abi

for x > 0. Since ¢ > 0, the second term on the right will be < the first in
the sector

¢
S =<z < —R
{z R¥ - z}

with opening independent of 6. We thus have
|F(z2)] < K+ for zeS,

K; being a constant depending on 6. The idea here is that the availability,
for f(w), of an analytic continuation through the arc {¢*: |9 —n| < nD}
has made it possible for us to diminish the term |y, which would normally
occur in the exponent on the right, to n(1 — D)|y|, thanks to the term — cx
figuring in the previous expression.

Because Y., - a,w" has radius of convergence 1, there is a subsequence ¥’
of Z with

log|a,|
n

—0 forn—o0in X'
Let 2a be the opening (independent of 6) of our sector §, i.e.,

c
o« = arctan—
D

With neX’, write Jensen’s formula for F(z) and the circle of radius nsina
about n (this is Kahane's idea). That is just

I Nemy, - ij log|F(n + nsinae'®)|d9 — logla,|,
0 P 2n -n

where N(p, n) denotes the number of zeros of F(z) in the disk {|z — n| < p}.
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6 IX A Pdélya’s gap theorem

LY

Figure 159

By the above estimate on |F(z)| for z€S, the right side of the relation
just written is

®
< logK; + ZLJ‘ (on 4+ dnsinacos $+ nsina-n(l — D)|sin 3[)d9
n -
— logla,|

= logK;+dn+2(1 — D)nsina—logja,l.

The left side we estimate from below, using the lemma. Since
Fm)=a,=0form € N~Z, we have, for 0<p<n,

N(p,n) = number of integersin [n—p, n+p] -—
number of elements of £ in [n—p, n+ p]
z 2p — (nsln+p)—ngln—p)) — 2.

Fix any &, O<e<sina. According to the lemma, for n sufficiently
large,

ng(n+p)—ngn—p) < 2p(Df+e)
when ¢(1 —sina}n < 2p < 2nsing, so, for such p (and large n),

N(p,n) = 2(1—-D¥—-¢)p — 2
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A Pdlya’s gap theorem 7

Hence y

nsina o
f N(p’n)dp = 21 —D;‘—s)<sina—i1——;La)>n
0 p

, since nn(t) increases

~ 2log 23in‘a .
g(1 —sina)

Use this inequality together with the preceding estimate for the right
side of the above Jensen formula. After dividing by 2n sin &, one finds that

— g S
(I—D;:‘—a)(l—s(l .sma)> < 5 L1_.p
2sina 2sino

1 1
oglal | O()
2nsino n

for large n, whence, making n — o0 in ¥/,

)
2sina’

g(1 —sina)

(1—Dg—s)<1 - > < 1-D+

2sina
on account of the behaviour of logla,| for ne X'

The quantity ¢, 0 < & < sing, is arbitrary, and so is é > 0 with, as we
have remarked, the opening 2« of S independent of §. We thence deduce
from the previous relation that 1 —D¥ < 1-D, ie, that

D < D%
This, however, is what we had to prove. We are done.

Remark. We see from the proof that it is really the presence in the Taylor
series of many gaps ‘near’ those ne X for which |a,| is ‘big’ (the ne X’) that
gives rise to large numbers of singularites on the circle of convergence. The
reader is invited to formulate a precise statement of this observation,
obtaining a theorem in which the behaviour of the a, and that of £ both
figure.

Polya’s gap theorem has.various generalizations to Dirichlet series. For
these, the reader should first look in the last chapter of Boas’ book, after
which the one by Levinson may be consulted. The most useful work on
this subject is, however, the somewhat older one of V. Bernstein. Two of
Mandelbrojt’s books — the one published in 1952 and an earlier Rice
Institute pamphlet on Dirichlet series — also contain interesting material,
as does J.-P. Kahane’s thesis, beginning with part II. There is, in addition,
a recent monograph by Leontiev.
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8 IX B Converse to Polya’s gap theorem; special case
B. Scholium. A converse to Pélya’s gap theorem

The quantity D} figuring in the result of the preceding § is a kind
of upper density for sequences £ of positive integers. Before continuing
with the main material of this chapter, it is natural to ask whether D¥ is
the right kind of density measure to use for a sequence T when investigating
the distribution of the singularities associated with

z aw"’

neX
on that series’ circle of convergence. Maybe there is always a singularity
on each arc of that circle having opening greater than 2zndy, with dy a
quantity < Df associated to Z which is really < D for some sequences
Z. It turns out that this is not the case; D¥ is always the critical parameter
associated with the sequence Z insofar as distribution of singularities on
the circle of convergence is concerned.

This fact, which shows Pdlya’s gap theorem to be definitive, is not well

known in spite of its clear scientific importance. It is the content of the
following

Converse to Polya’s gap theorem Given any sequence X of positive integers
with Pdlya maximum density DF >0, there is, for any 6, 0<d<D¥, a
Taylor series

Y aw”

neZ

with radius of convergence 1, equal, for |w| < 1, to a function which can be
continued analytically through the arc

{e'%: | 9] < (DX —5)}.

The present § is devoted to the establishment of this result in its full
generality.

1. Special case. £ measurable and of density D > 0.

If lim,. ng(t)/t exists and equals a number D>0 ( ng)
denoting the number of elements of Z in [0, t] ), the converse* to Polya’s
theorem is easy — I think it is due to Polya himself. The contour integration
technique used to study this case goes back to Lindelodf; it was extensive-

* in a strengthened version, with analytic continuation through the arc
9] < nD} = =D
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1 X measurable, of density D >0 9

ly used by V. Bernstein in his work on Dirichlet series, and later on by
L. Schwartz in his thesis on sums of exponentials.

Restricting our attention to sequences T of strictly positive integers clearly
involves no loss in generality; we do so throughout the present § because that
makes certain formulas somewhat simpler. Denote by N the set of integers
> 0 (N.B. this is different from the notation of §A, where N also included
0 ), and by A the sequence of positive integers complementary to Z, i.e.,

A = N~Z

For t =0, we simply write n(t) for the number of elements of A (N.B.l) in
[0, t]. Put*

2
Cl) = H(l—;—z>;

neA
in the present situation

n(t)

-~ 51—-D for t—
t

and on account of this, C(z) turns out to be an entire function of exponential
type with quite regular behaviour.

Problem 29
(a) By writing |log C(z)| as a Stieltjes integral and integrating by parts, show
that
I .
ogICiN _, .\ _p,
Iyl

fory— +
(b) Show that for x>0,

log| C(x)| = zj'(""“’_m(i» &
1] T T 1—1

(Hint: First write the left side as a Stieltjes integral, then integrate by
parts. Make appropriate changes of variable in the resulting expression.)

(c) Hence show that for x >0,

log|C(x)| < 2n(x)logl + ZJy(n(XT)—rn<§>> dz
Y

,
o\ T t))1—12

with y any number between 0 and 1.

* When D =1, the complementary sequence A has density zero and may even
be empty. In the last circumstance we take C(z) = 1; the function f(w) figuring
in the construction given below then reduces simply to w/zn(1 + w).
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10 IX B Converse to Polya’s gap theorem; special case

(d) By making an appropriate choice of the number y in (c), show that
log|C(x)| < ex for large enough x, £¢> 0 being arbitrary.

(e} Use an appropriate Phragmén—Lindel6f argument to deduce from (a) and
(d) that

lim sup
(f) Show that in fact

log|C(n)|
n

1 C i$
r

—0 for n—ooin X,

and that we have equality in the result of (¢).
(Hint: Form the function

22
K(z) = H(l——z);

nel n
then, as in (e),

limsu

r—+w

1 K ig
p—ogl el < nD|sin 9.
’

Show that the same result holds if K(re'®) is replaced by K'(re'®). Observe
that

nzK(z)C(z) = sinnz.

Look at the derivative of the left-hand side at points neXx.)

We are going to use the function C(z) to construct a power series

Y aw"
neXl
having radius of convergence 1, and representing a function which can be
analytically continued into the whole sector |arg w| < zD.
Start by putting

1 ++ic0 C
fw = — | 2O,

. . td(
2mi J4 i SINTE

for |]arg w| < nD. Given any ¢ > 0, we see, by part () of the above problem,

that

C(z +in)
sin (3 + in)

(n(1 ~ D) +¢&)|nl

const.
€

= cosh m
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