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1 Interfacial free energy and the y-plot

1.1 The free energy of an interface

Whilst the interest in the atomic structure and electronic behaviour of
surfaces has arisen relatively recently, the method of treating interfaces
thermodynamically was introduced as long ago as the last century.
Gibbs, in particular, published a considerable contribution to the field
in 1878 and much of this work still forms the basis of a large part of the
present understanding of interfacial phenomena.

Of particular interest is the concept of the free energy, per unit area,
of an interface, and necessarily associated with this, the method of
defining the interface position relative to the two phases which lie on
either side of it. The concept of a free energy associated with an inter-
face may easily be appreciated by considering the total free energy of
some system consisting of two phases of volumes ¥V, and V¥, in contact.
The total Gibbs free energy, for instance, will be given by

G = GV + GoVp + y12d12 (1.1)

where A,, is the area of the interface separating the phase and vy, is
the Gibbs free energy per unit area of the interface. An understanding
of a surface energy may be achieved by considering the surface of a
material whose energy may be described on a pairwise bonding model.
Clearly, because of the different environment of atoms near the surface
of the material, the energy of these atoms will be different from those
in the bulk. For the sake of convenience this difference is associated with
the dividing surface between the phases.

The Gibbs free energy per unit area of a surface may be decomposed,
in the normal way, as

y=¢€— Ty + pv (1.2)

where ¢ is the surface energy per unit area, » the surface entropy per
unit area and v the surface volume per unit area. This final term, v, is
associated with the change in atom density in a material near the inter-
face; for instance, there may be a different spacing of the outermost
planes near a free solid surface. This is an extremely small term and
may be neglected in almost all cases of interest. Thus, in general, the
Gibbs free energy per unit area is equivalent to the Helmholtz free energy
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2 Interfacial free energy and the y-plot

per unit area which is also often defined as y. A more complete treat-
ment and derivation of the concept of surface free energy was given by
Gibbs (1878) but the above discussion will suffice for our present needs.
It is, however, of interest to point out that Gibbs accounted for adsorp-
tion at the interface by the addition of terms w,[ to the surface free
energy where y; is the chemical potential of the ith species of adsorbed
atoms, and I is the surface density of these atoms. Also, in general, the
Gibbs dividing plane or interface, is defined only as a plane passing
through all points having a similar environment in the boundary region
between the two phases. This surface has a degree of freedom in dis-
placement perpendicular to the surface; this is removed for one-
component systems by the necessity that the surface mass term shall be
zero. Thus, if an equation of the general form of (1.1) is written with
the total mass of the system on the left hand side and the G,, and G,
replaced by the densities of the two bulk phases, the surface is positioned
such that no surface term need appear in this equation. For multi-
component systems, the problem of defining the position and thickness
of the interface has been discussed in detail by Cahn & Hilliard (1958).

1.2 Surface tension and its relation to surface free energy

The definitions given above for the interfacial free energy per unit area
(which will be referred to, for the sake of convenience, as the surface
free energy) corresponds to the work involved in creating unit area of
interface. In the rest of the discussion in this chapter it is this quantity
which is of significance in determining the equilibrium in a two phase
system (when the total Gibbs free energy is a minimum). However, as
will be seen in the next chapter, the quantity measured experimentally
is usually the surface tension of the interface. For an interface between
two fluids the relationship between these two quantities is simple. In
this case a consideration of the work done against the surface tension in
expanding an interface to create new area of interface shows that this
work is equal to the surface free energy of the same area of new inter-
face. Thus the surface tension and surface free energy are numerically
equal if expressed in similar units. However, this is not necessarily true
for an interface which is bounded on at least one side by a solid (which
for convenience will be referred to as a solid surface, though this may
be a free solid surface, a solid-liquid interface or a solid-solid interface).
As Gibbs pointed out, whilst the surface free energy corresponds to the
work done in forming the surface, the surface tension depends on the
work done in stretching the surface. The equivalence of these two
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1.3 The v-plot and the TLK model 3

processes requires the tacit assumption that there is no marked change
in surface structure associated with the latter process and thus no work
is spent in deforming the surface. In using experimental determinations
of the surface tension to give a value of the surface free energy it is
assumed, therefore, that the temperature at which the experiments are
performed is sufficiently high for surface and bulk diffusion to correct
the distortion effects and so permit the equality to be used.

1.3 The y-plot and the terrace-ledge-kink model of a surface

In order to fully characterise an interface in terms of its surface free
energy, y must be known for all orientations of the interface and con-
ventionally it is plotted on a polar diagram such that the length of the
radius coordinate is proportional to the value of y for a surface perpen-
dicular to the direction of the radius vector. For a simple liquid inter-
face there is no orientation dependence of y and so the y-plot (as this
polar diagram is commonly known) is a sphere, and any section passing
through the origin of the coordinate system (which therefore provides
a more convenient two-dimensional y-plot) is a circle.

For a solid surface, however, y is clearly a function of crystallo-
graphic orientation and so the y-plot will not be spherical. To determine
the general features of the y-plot for a solid surface it will be convenient
to consider the free surface of a solid at the absolute zero of temperature
so as to remove thermal disordering and entropy effects. Let us first
consider surfaces having orientations close to that of a low index plane.
These surfaces will appear as a series of terraces of the low index plane,
the step density in this terraced structure being characteristic of the
deviation of the surface normal from that of the low-index plane, 6.
Thus for such a surface composed of steps, or ledges of height a,
having a mean separation in the complex surface, / (see fig. 1.1(a)),
it is clear that

sin 8 = afl. (1.3)

Now according to the terrace-ledge-kink (TLK) model of a surface,
the surface energy can be decomposed into terms giving the energy
for the low index plane, v, per unit area of the low index plane (the
terraces), the ledge energy, 8 per unit length of ledge, and in the case of
more complex orientations than that considered here there will be a
further term due to the energy of kinks in the ledges (fig. 1.1(b) shows
an example of such a surface). For any particular azimuth the kink
density on the ledges will be constant, and only the separation of the
ledges will change with 8, so the particular model used here of a low
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4 Interfacial free energy and the y-plot

Terrace

Ledge
®

Fig. 1.1. (a) A simple stepped or ledged surface with low index terraces.
(b) More complex surface including kinked ledges.

index azimuth involves no loss of generality providing that the absolute
value of the ledge energy is not specified. For this surface, therefore, as
shown in fig. 1.1, the surface energy per unit area is given by

Yo = vo c0s |6] + Bl
B

= vy, cos |0 +Esin|6[. (1.4
Note that the |6| terms have been introduced because y, is indepen-
dent of the sign of 8 due to the symmetry of the situation. It is easy to
show that (1.4) describes the relationship shown in fig. 1.2. The point of
particular interest is that the graph shows that there will be a ‘cusp’
in the y-plot at orientations corresponding to low index planes. This
cusp is a sharp minimum in y, but is a mathematical singularity rather
than a simple minimum (i.e. &y,/00 is discontinuous at this point). It
is not, in fact, a point of self-tangency which is the more correct mathe-
matical definition of a cusp in the normal way, but the term is in

popular use and usefully describes the appearance of the curve.
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1.4 Pairwise bonding models 5

Ye

0

Fig. 1.2. The dependence of y, on 8 for the simple model depicted in
fig. 1.1.

While this application of the TLK model of the surface is a very
simple and therefore special case, it is possible, by suitable mental
agility in describing a more complex surface on a TLK model, to show
that cusps will appear in the y-plot at all orientations corresponding to
surfaces having rational Miller indices. Each of these singularities
corresponds, as does a rational set of Miller indices, to a particular
long range ordering described in the surface by particular sets of ledge
and kink spacings. Evidently, in this model no account is being taken
of thermal vibrations of the atoms which might destroy this long range
order; this point will be discussed later in this chapter (§1.5).

It should, however, be pointed out that this treatment and the one
which follows are designed to determine the surface energy which is
only equivalent to the free surface energy, y, at the absolute zero of
temperature. However, this is the only temperature at which the above
considerations are valid. Firstly, however, we shall use the other
commonly applied method of determining surface energies, in its most
general form to show more clearly the shape of the y-plot for a solid
surface.

1.4 Pairwise bonding models

This alternative model of a solid surface is derived from assuming that
a crystal consists of atoms interacting attractively in pairs by means of
forces of finite range. The surface energy of a surface may then be
given by the sum of the energies of all bonds broken by the surface and
passing through unit area of the surface. It is easy to see that this is
the same as the sum of the energies of all bonds broken by the surface
originating from the atoms situated below unit area of the surface.
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6 Interfacial free energy and the y-plot

First, consider all interatomic bond vectors of the type u; having
associated energy E(u;). Now, if # is a unit normal to the surface under
consideration, then all atoms having broken bonds of the type #; will
lie between the surface and a plane parallel to the surface but a distance
n-u; below the surface. Thus, if £ is the volume of crystal per atom
then the number of atoms below unit area of the surface having broken
bonds of the type u; will be (n-u;)/£2. Thus the surface energy of this
surface is given by

E(u)
=2 meu —g (1.5)

where the summation is over all i for which n-u;, > 0, or

n=m2m%?- (1.6)

Notice that bonds for which n+u; < 0 are directed back into the crystal
and are therefore not broken.

Now if the interatomic forces are of finite range, this summation has
a finite number of terms and also there is a small range of orientations
for which any set of i (for which n-u; > 0) is constant ; these orientations
lie in a pyramid, p, say. Within this pyramid we may write

I .7

[9]
where s, is a fixed vector in p, and so within p

Vo = M+Sp. (1.8)

Thus, we have from this relation, that the projection of s, on » has
magnitude y,. That is, within the pyramid p, the locus of the end of the
vector ny, is a sphere passing through the origin of the polar (y-plot)
coordinate system. This is shown in fig. 1.3. In general, therefore,
providing that a pairwise bonding model is a suitable description of
the crystal and its surface, the y-plot will be composed entirely of
portions of spheres which pass through the origin. Moreover, the inter-
sections of these spheres (where cusps will be formed) occur where the
set of #; for which n-u;, > 0 changes; this occurs when one or more of
the n-u;, = 0, a condition which clearly corresponds to some rational
index orientation. Thus the general picture of a solid surface y-plot at
absolute zero of temperature is of a surface composed entirely of portions
of spheres (all of which will be convex outside as they pass through
the origin), with cusps at the junctions of these spheres corresponding
to all rational index orientations. This shape has been aptly described
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1.5 Effect of temperature on the y-plot 7

Fig. 1.3. Vector diagram for s, and ny, showing the section of the y-
plot generated in the pyramid p.

Fig. 1.4. A schematic y-plot at 0°K.

by Frank as a ‘raspberry’ figure. A schematic y-plot of this type is
shown in fig. 1.4.

1.5 Effect of temperature on the y-plot
At elevated temperature the shape of the y-plot simplifies from that
shape described above. This is because the increase in temperature
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8 Interfacial free energy and the y-plot

results in a certain amount of surface disordering (for instance, in the
form of the equilibrium concentration of kinks on ledges). This tends
to destroy the long range order on the high index surfaces and so the
singularities in the y-plot corresponding to these surfaces may be
expected to disappear and the associated cusps to be smoothed out.
This problem has been treated in some detail for a free solid surface in
the TLK model, particularly by Burton, Cabrera & Frank (1951). For
a high index surface, the surface disorders gradually with increasing
temperature as the density of opposite sign kinks on the surface ledges
increases, until all long range order has disappeared. For a low index
surface the picture is rather different. Disordering can occur by the
generation of surface vacancies and adatoms but it is important to
consider cooperative effects as the population of these increase. In
analysing this situation the ‘roughening’ of the surface was considered
on a two, three and five level model using Bethe’s (1935) method for
treating order-disorder phenomena. In this way they showed that the
disordering of the surface occurs largely within quite a narrow tem-
perature range after the fashion of a phase transition. For this reason the
effect is known as ‘surface melting’. Below the surface melting tem-
perature the surface is well-ordered and smooth on an atomic scale.
Frank (1958) has suggested that an interface of this type be called a
‘singular’ surface. Above the transition temperature, the surface atoms
are in a completely disordered state and thus the singularity in the y-plot
corresponding to that orientation of surface will disappear, and the
cusp will be rounded initially into a simple minimum. Burton, Cabrera
and Frank also made some semi-quantitative predictions as to the
value of the surface melting temperature for different surfaces, and
found that for low index surfaces corresponding to planes of close
packing in which the atoms are bound within the plane by bonds in
two directions, the surface melting temperature is likely to be signifi-
cantly higher than the bulk melting point. Thus surface melting will
not be observed on these planes. For other orientations, however,
surface melting is likely to occur below the bulk melting temperature.
These results show that the complex y-plot shape predicted in §1.4 for
absolute zero temperature will be simplified by a rounding-off of many
of the cusps at elevated temperatures. The extent to which this process
has occurred depends on the temperature but in general there will
always be some cusps remaining right up to the melting point of the
solid. Fig. 1.5 depicts schematically the y-plot of a solid surface at
some elevated temperature.

Since the work of Burton, Cabrera and Frank other authors have
shown that different models of the surface predict similar effects.
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1.6 Equilibrium shape of a surface 9

Fig. 1.5. A schematic y-plot at elevated temperature. The Wulff con-
struction for the equilibrium shape of a particle is also shown.

Mullins (1959) has shown that a very simple treatment using Bragg—
Williams order—disorder theory predicts the surface melting type of
behaviour. Gruber & Mullins (1967) have considered the disappearance
of y-plot cusps for low index plane surfaces, taking into account the
configurational entropy of the surface, and similarly predict the occur-
rence of melting and confirm its lack of importance for the close-packed
plane orientations below the melting point of the bulk solid.

1.6 Equilibrium shape of a surface

From a complete knowledge of the y-plot for the interface between
two phases it is possible to determine the equilibrium shape of the inter-
face. The most general case is that of the equilibrium shape of a particle
of one phase surrounded by the other phase. In the absence of external
constraints the equilibrium shape will not be a function of which phase
is the ‘particle’ and which is the surrounding phase. For instance, the
equilibrium shape of a solid particle surrounded by its own vapour will
be the same as that of a void in the solid. Experimentally, one might
start with a very small spherical particle and observe the change in
shape as the surface approaches equilibrium. In principle, any particles
of any size will eventually achieve thermodynamic equilibrium and the
same equilibrium shape, but in practice the time taken to achieve
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10 Interfacial free energy and the y-plot

equilibrium is shortest for a small particle. Moreover, in a small particle
the surface energy driving force will be large relative to other terms due
to external constraints (such as gravity). Clearly, the total free surface
energy of a particle, or any closed surface, is given as

G = [ mas, (19

where n is the outward normal at some element of area on the surface
dS, and equilibrium will finally be achieved when the shape corre-
sponds to the minimum value of G. The construction which permits
the equilibrium shape to be deduced from the y-plot is originally due
to Wulff (1901) and is normally referred to as Wulff’s theorem or the
Wulff construction. This states that if planes are drawn perpendicular
to the radius vectors where they cut the y-plot, then the inner envelope
of these planes corresponds to the equilibrium shape. A construction
of this type is shown superimposed on the y-plot in fig. 1.5. Probably
the most interesting feature of the equilibrium shape emerging from
this is the presence of facets corresponding to some of the deepest
cusps and therefore being of rather low index (close-packed plane)
orientations. Thus a large number of orientations are not represented
on the equilibrium surface as the portion of the y-plot corresponding
to these orientations falls outside the constructed equilibrium surface
shape. Evidently, a crystal in equilibrium at absolute zero (could such
a state be achieved) would have an entirely polygonal shape, being
composed entirely of facets. At elevated temperatures this need not be
true, however, because if the cusps which do produce facets are shallow,
rounded regions may appear on the equilibrium shape. However, as
long as some cusps remain in the y-plot at least some facets will appear
in the equilibrium shape. For the case of free solid surfaces, therefore,
which were treated in the Burton, Cabrera and Frank analysis discussed
in the previous section, some facets will be expected to remain on the
equilibrium shape right up to the bulk melting point.

While equilibration over the overall shape of a particle, for the free
solid surface at least, is an extremely slow process, the local equilibrium
in a surface may be expected to occur in a much shorter time because
of the smaller amount of mass transfer and shorter distances of transfer
required to achieve the desired state. Further deductions can be made
about the shape of such a surface from the y-plot, for, if the surface
has an orientation corresponding to a large surface free energy, it is
evident that a breakdown into a hill-and-valley structure of lower free
surface energy surfaces may be favourable, despite the higher surface
area incurred by this change. It is this effect which leads to the so-called
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