AN INTRODUCTION TO
ABSTRACT ALGEBRA
AN INTRODUCTION TO
ABSTRACT ALGEBRA

VOLUME I

BY
F. M. HALL
Head of the Mathematics Faculty,
Shrewsbury School

SECOND EDITION

CAMBRIDGE UNIVERSITY PRESS
Cambridge
London New York New Rochelle
Melbourne Sydney
CONTENTS

Preface

page xi

1 INTRODUCTION
1.1 The nature of algebra 1
1.2 Abstract algebra 1
1.3 The axiomatic approach to mathematics 2
1.4 Logic in mathematics 3
1.5 Historical summary 7

2 SETS
2.1 The idea of a set 9
2.2 Notation for sets 11
2.3 Subsets 16
2.4 Equivalence relations 17
Worked exercises 20
Exercises 2A 21
Exercises 2B 23

3 ELEMENTARY SET THEORY
3.1 Abstract sets 24
3.2 Methods of proof in set theory 25
3.3 Venn diagrams 28
3.4 Simple algebra of sets: the basic rules 32
3.5 Simple algebra of sets: some theorems 38
3.6 Applications to logic: the algebra of statements 41
3.7 Syllogisms 44
Worked exercises 46
Exercises 3A 47
Exercises 3B 49

4 THE SET OF INTEGERS
4.1 The natural numbers 51
4.2 The complete set of integers 53
4.3 Induction 59
4.4 Divisibility 61
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5 Highest common factor</td>
<td>62</td>
</tr>
<tr>
<td>4.6 Prime factorisation</td>
<td>65</td>
</tr>
<tr>
<td>4.7 Lowest common multiple</td>
<td>67</td>
</tr>
<tr>
<td>Worked exercises</td>
<td>68</td>
</tr>
<tr>
<td>Exercises 4A</td>
<td>69</td>
</tr>
<tr>
<td>Exercises 4B</td>
<td>70</td>
</tr>
<tr>
<td>5 OTHER SETS OF NUMBERS</td>
<td></td>
</tr>
<tr>
<td>5.1 The rationals</td>
<td>72</td>
</tr>
<tr>
<td>5.2 The real numbers</td>
<td>77</td>
</tr>
<tr>
<td>5.3 Complex numbers</td>
<td>79</td>
</tr>
<tr>
<td>5.4 Subsets of the set of complex numbers</td>
<td>81</td>
</tr>
<tr>
<td>5.5 Quaternions</td>
<td>81</td>
</tr>
<tr>
<td>Worked exercises</td>
<td>83</td>
</tr>
<tr>
<td>Exercises 5A</td>
<td>83</td>
</tr>
<tr>
<td>Exercises 5B</td>
<td>85</td>
</tr>
<tr>
<td>6 RESIDUE CLASSES</td>
<td></td>
</tr>
<tr>
<td>6.1 Congruences</td>
<td>86</td>
</tr>
<tr>
<td>6.2 Residue classes</td>
<td>89</td>
</tr>
<tr>
<td>6.3 Division of residues</td>
<td>92</td>
</tr>
<tr>
<td>6.4 Addition and multiplication tables: some particular finite</td>
<td>94</td>
</tr>
<tr>
<td>arithmetics</td>
<td></td>
</tr>
<tr>
<td>6.5 Congruence equations</td>
<td>96</td>
</tr>
<tr>
<td>6.6 Some results in the theory of numbers</td>
<td>98</td>
</tr>
<tr>
<td>6.7 Divisibility tests</td>
<td>99</td>
</tr>
<tr>
<td>Worked exercises</td>
<td>101</td>
</tr>
<tr>
<td>Exercises 6A</td>
<td>102</td>
</tr>
<tr>
<td>Exercises 6B</td>
<td>103</td>
</tr>
<tr>
<td>7 POLYNOMIALS</td>
<td></td>
</tr>
<tr>
<td>7.1 Definition and algebra of polynomials</td>
<td>105</td>
</tr>
<tr>
<td>7.2 The coefficients of a polynomial</td>
<td>108</td>
</tr>
<tr>
<td>7.3 Divisibility and irreducibility</td>
<td>109</td>
</tr>
<tr>
<td>7.4 Highest common factor</td>
<td>112</td>
</tr>
<tr>
<td>7.5 Prime factorisation of polynomials</td>
<td>115</td>
</tr>
<tr>
<td>7.6 Lowest common multiple</td>
<td>116</td>
</tr>
<tr>
<td>7.7 Zeros of a polynomial: the remainder theorem</td>
<td>116</td>
</tr>
</tbody>
</table>
CONTENTS

7.8 Gauss’s theorem
7.9 Various sets of coefficients
7.10 Rational functions
Worked exercises
Exercises 7A
Exercises 7B

8 VECTORS
8.1 Introduction
8.2 Definition and algebra of vectors in two dimensions
8.3 The algebra of vectors illustrated geometrically
8.4 Vectors in three dimensions
8.5 The use of vectors in Cartesian geometry
8.6 Projective geometry
8.7 n-dimensional vectors
8.8 Multiplication of vectors
8.9 More examples of vectors
Worked exercises
Exercises 8A
Exercises 8B

9 FUNCTIONS AND MAPPINGS
9.1 The idea of a function
9.2 Transformations in geometry
9.3 Mappings
9.4 1-1 correspondence
9.5 Isomorphisms
9.6 Products of mappings
Worked exercises
Exercises 9A
Exercises 9B

10 THE FUNDAMENTAL LAWS OF ALGEBRA
10.1 The algebra of numbers: the four rules
10.2 The laws of addition
10.3 Subtraction and the zero
10.4 The laws of multiplication
10.5 The distributive law
CONTENTS

10.6 Division and the unity 181
10.7 The laws for sets other than numbers 184
10.8 The similarity between sum and product 187
10.9 Algebraic structures 188
10.10 Some types of structures 189
Worked exercises 190
Exercises 10A 191
Exercises 10B 193

11 GROUPS
11.1 The idea of a group 195
11.2 The abstract definition of a group 200
11.3 Elementary consequences of the definition 201
11.4 The order of a group 202
11.5 Abelian groups 203
11.6 The multiplication table 204
11.7 The inverse of a product 208
11.8 Powers of an element 210
11.9 Latin squares 213
Worked exercises 214
Exercises 11A 215
Exercises 11B 216

12 EXAMPLES OF GROUPS
12.1 Examples from sets of numbers 218
12.2 Residue classes: the cyclic groups 221
12.3 Groups of polynomials 225
12.4 Vectors 226
12.5 Transformations of polygons: the dihedral groups 226
12.6 Permutations 230
12.7 Transformations of solid figures 239
12.8 Some other groups 244
12.9 Direct products 248
12.10 Generators and relations 250
Worked exercises 251
Exercises 12A 253
Exercises 12B 257
CONTENTS

13 SUBGROUPS
 13.1 Definition of a subgroup page 259
 13.2 The subgroup of powers of an element 260
 13.3 Examples of subgroups 261
 13.4 Frobenius notation for subsets of a group 270
 13.5 Cayley's theorem 273
 13.6 Cosets 276
 13.7 Lagrange's theorem 279
 13.8 Subgroups of cyclic groups 280
 13.9 Classification of groups to order 6 281
Worked exercises 283
Exercises 13A 284
Exercises 13B 286

Answers to Exercises 288

Index 295
PREFACE

This work, to be completed in volume 2, is written at a time when abstract algebra is being introduced increasingly into the schools. It attempts to give a broad introduction to the subject, and is intended for those with no previous knowledge of this work but with a fair amount of mathematical sophistication. The level at which the book is written is that of a fairly intelligent sixth-former who wishes to know something about modern algebra and the work that leads up to it, and it could well be read by such a boy before he enters a university. Volume 2 in particular should be useful also for first-year university students, as a general background before a detailed study of the various branches of algebra, while teachers of mathematics who have not studied abstract algebra themselves but who, nevertheless, wish to learn about it and possibly to teach it should find parts of both volumes interesting and useful. While books on groups, rings, vector spaces and the other topics abound, it is not easy to find many which start from the beginning and lead up to the ideas gradually and in a fairly elementary manner. It is hoped that in this the book will satisfy a need.

The present volume leads up to the abstract ideas and methods by means of the study of various particular cases. After a little work on general sets and set theory it deals with the special sets of the integers, other number sets, residues, polynomials and vectors. These should be fairly familiar to the reader, but the emphasis is on those properties that carry over into more general abstract structures, and the proofs selected bear this in mind. Some may wish to omit parts of these chapters as being already known, but some of the results, though important and fairly simple, are not easily available in ordinary text-books.

After a chapter on mappings we study in detail the fundamental laws of algebra, which have lain behind the previous work, and then the final three chapters introduce the theory of groups, give plenty of examples, and study the idea of subgroups as far as Lagrange’s theorem.
Volume 2 will continue group theory with a chapter on group homomorphisms and will then introduce elementary ideas in the study of rings, fields and integral domains. Invariant subgroups and ideals will be discussed, and there will be a chapter on vector spaces in which matrices will be mentioned, though no detailed account of matrix theory or linear algebra will be given, since the methods and results of these subjects are, I believe, different in kind to those of abstract algebra proper, being analytic rather than synthetic, more concerned with the properties of individual elements than with the structure as a whole. Volume 2 will end with more detailed work on the algebra of sets and Boolean algebra, and an indication of the main ways in which the work of the whole book is developed into more advanced topics.

Throughout the book I have been careful to give detailed explanations of the reasons for the work, and of the methods used. The technical language has been kept within bounds, as has the symbolism. Yet the work is rigorous as far as it goes, and the notation is in accordance with normal usage, though there is no general agreement in this respect. I have explained new notation as it arises, and occasionally have used my own, as in chapter 6 where residues are printed in bold type. The reader will have nothing to ‘unlearn’ when he passes on to more advanced text-books.

At each stage I have given as many concrete examples of the structures as I could. It is not always easy to find convincing ones (for example, most simple illustrations of Venn diagrams could be understood just as easily without their aid), and many are taken from other branches of mathematics, but I have done my best and the stock of examples will increase as the subject is taught more and more at an elementary level.

The book is intended to be read with little or no aid from a teacher (not that such aid should be scorned if available) and each chapter ends with a few worked exercises. The exercises themselves are divided into A and B: the first are quite straightforward and should be worked completely. The B exercises are very variable; some are fairly straightforward, others quite difficult and a few give extensions of the bookwork. The reader is not expected to be able to do all these exercises, at least not
at a first reading. As with practical examples, so with exercises it is not easy to find those which, without being impossible for any but research workers, are yet non-trivial and worthy of the attention of the student. Here again I have done my best, and here also the stock should increase with use.

I would like to thank some of my former pupils at Dulwich College who read the manuscript and made valuable suggestions. I am indebted to my colleague, Mr D. B. Pennycuick, who read the proofs; and am grateful to the Cambridge University Press for their help throughout all stages of the preparation of the book.

Dulwich College
December 1964

F. M. H.