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1
INTRODUCTION

1.1. The nature of algebra

Algebra is first a generalisation of arithmetic. Instead of
dealing with particular numbers we use letters to denote
arbitrary ones and work with these according to the usual rules
of arithmetic. It is concerned with those properties and pro-
cesses that are common to all numbers and not those, such as
primeness, peculiar to certain numbers or integers. The interest
of algebra lies in the processes we use and their consequences,
some of the chief fields of the work being the use of the four rules
of addition, subtraction, multiplication and division and pro-
blems involving them, such as simplification of expressions, the
solution and investigation of equations, the study of poly-
nomials and other functions and their graphs, and the investiga-
tion of inequalities.

Elementary algebra uses letters to stand for numbers of
various types: fractions, real numbers and later complex
numbers. Most of the work is similar in all these cases, the
processes and rules being almost identical, and the algebra is not
basically concerned with the particular set of numbers in ques-
tion, but rather with the methods and rules for combining them.

Algebra is essentially a finite process. We often include under
the heading of ‘algebra’ such topics as convergence of series
and the study of transcendental functions such as the exponential
and logarithmic functions, but these properly belong to analysis,
which is concerned with limiting processes and the infinite and
infinitesimal.

1.2. Abstract algebra

As we have indicated, algebra is concerned basically with the
processes and rules of combination of numbers, rather than with
the numbers themselves. This wasnotrealised by theearly workers,
but in the early part of the nineteenth century mathematicians
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2 INTRODUCTION [1.2

gradually came to understand that the same or similar processes
to those used in elementary algebra could be applied to many
objects or sets other than numbers, and modern abstract algebra
came into being.

Modern algebra then is concerned with sets of objects and
possible ways of combining the elements of the set. Many rules
of combination have been investigated and others are still being
studied: the most fruitful are those with similar properties to
the ordinary four rules of elementary work, though applied
much more generally than to numbers alone.

Sets, together with rules of combining their elements, form
algebraic structures. Much of the interest is synthetic, i.e. is
concerned with the shape of the structure as a whole, but the
analytical aspect of investigation of the elements themselves is
important in some cases.

In this book we deal first with various special structures,
empbhasising those aspects that are of general application, and
later, particularly in volume 2, investigate more general struc-
tures. Thus the reader is led gradually into the purely abstract
work, and even there many concrete examples are given.

1.3. The axiomatic approach to mathematics

Modern pure mathematics is almost entirely axiomatic in
approach. This is a fairly recent development: for most of its
history mathematics has been ostensibly based on the natural
or everyday world. Thus, whatever Euclid himself believed his
system of geometry to be, it has usually been taken to be a
description of physical space, while the nature of real numbers
was held to be self-evident by most people. Such foundations
gradually proved unsatisfactory. The assumptions behind Euclid
are difficult to state clearly and since the formulation of the
theory of relativity it has been found that the natural world
does not obey them anyway. Analysis became rigorous only
about 200 years ago, and the nature of irrational numbers was
not described until 1872, while the nature of number itself is
still being discussed.

The intuitive ideas behind mathematics are thus not secure,
and the study of the foundations belongs more properly to
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1.3] INTRODUCTION 3

philosophy: mathematics itself is concerned with the deductions
obtained from the basic ideas. It is therefore more satisfactory
to lay down certain initial axioms or postulates and to deduce
from them according to the accepted laws of logic (which are
themselves the subject of study by philosophers). Mathematics
is not concerned with the question whether the axioms are
‘true’ or not; all it can say is that given certain assumptions
then other results and consequences follow logically. Theo-
retically any set of axioms may be chosen provided it is self-
consistent, but obviously the work will be unfruitful unless the
choice is a careful one, and natural phenomena and the
traditional fields of study can lead us to suitable sets of axioms.
Thus Euclid may be put on a proper footing by assuming certain
axioms, while the choice of similar sets will lead to the various
non-Euclidean geometries. The fewer the axioms the greater
generality the resulting system possesses, but the fewer the
results that may be deduced.

Thus modern mathematics lays down postulates and deduces
from them. This can be a surprisingly fruitful process, both in
practical terms (since many practical systems will obey the
axioms chosen) and in aesthetic ones. It enables us to study
systems that seem at first sight impossible but which often turn
out to be extremely useful. For example, the study of space of
four dimensions would seem useless at first sight, but it is vital
to relativity theory and also in electromagnetism.

Abstract algebra lays down postulates for combining elements
of sets and studies their consequences. For numbers these are
the fundamental laws of addition and multiplication (the Com-
mutative, Associative and Distributive Laws), while the choice
of some only of these leads to the study of more general struc-
tures. A surprising amount of work may be done with very
few axioms in this subject (group theory has only three basic
laws but research is still very active in the subject).

1.4. Logic in mathematics

Mathematics uses the laws of logic and we do not attempt to
lay down what these are or to study them. There are, however, a
few important logical ideas which are often not understood
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4 INTRODUCTION [1.4

properly by the mathematical student but which are vital to
much of his work, especially that which is concerned with the
consequences of axioms rather than the techniques of manipula-
tion. We explain some of these here.

Equality and identity

In elementary work the equals sign is usually used to indicate
that two expressions have the same value, e.g. x+2 = 4 means
that x +2 and 4 have the same value, for some particular value
of x, which often has to be found. If two expressions have the
same value for all values of the variable concerned we usually
use the identity sign; thus (x +2)? = x®+4x +4. The distinction
is often blurred in practice. The equals sign is also used as a
special case of an inequality, thus we use ‘<’ and ‘>, and
both being true implies equality.

We will use ‘a = b’ to mean that a and b are the same. This
implies nothing about inequalities and may be used whatever
type of element we are dealing with. Thus for numbers ‘x = y»’
means that x and y are the same number, while if we are dealing
with polynomials ‘P(x) = Q(x)’ means that P(x) and Q(x) are
the same polynomial, according to our definition of sameness
of polynomials (they are of the same degree and have all
coefficients the same). If 4 and B are sets ‘4 = B’ means that
they are the same set, not merely that they are of equal size.
Other uses of the symbol (for example, for isomorphic groups)
will be given as we require them.

Implication

If a statement A leads logically to another statement B we say
that ‘4 implies B’ and write 4 = B. For example: R is a
square = R is a rectangle, or x = y = x? = y?, or the positive
integer n is even = n can be divided by 2. If 4 = B then B is
implied by 4 and we sometimes write B<= 4. If it does not
follow logically that B is true when A is, we write 4 + Bor
B < A.

In the first two examples above we have 4 = B but B # A,
while in the third B = A4 also. In this case we say that ‘ 4 implies
and is implied by B’ and write 4 <= B. In such a case the state-
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1.4] INTRODUCTION 5

ments are logically equivalent and the argument in which B
follows A is reversible. This is not the case in the other two
examples. Again the distinction is often not realised, as when
solving an equation we square both sides. This is not reversible
and so, although any solution must be given by our method, it
does not follow that a solution we obtain is a solution of the
original equation, and each must be checked.

If A and B must be either true or false statements, so that if
we call the negation of 4 ‘not 4’ then either 4 or not 4 is true,
A = Bis logically equivalent to ‘not B = not 4°.

The sign = must not be confused with -», nor < with <, the
latter beingused for various correspondences. Thusininversion we
could write P — P’ or P < P’ where P and P’ are inverse points.

Necessary and sufficient conditions

A is a necessary condition for B means that B = A4: if B is
true then 4 must be.

A is a sufficient condition for B means that 4 = B:if 4 is true
then B must be.

Thus a necessary condition for an integer greater than 2 to be
prime is that it is odd, but this is not sufficient. A sufficient
condition for a figure to be a rectangle is that it is a square, but
this is not necessary. However, the necessary and sufficient
condition for two triangles to have their sides in proportion is
that they are equiangular.

We often have a set of necessary and sufficient conditions.
(4 is a necessary and sufficient condition for B means that
A < B.) Thus necessary and sufficient conditions for a figure to
be a square are that it is a rectangle and also a rhombus.

If and only if

This gives another way of thinking about the ideas of implica-
tion. If 4 = B we say that B is true if 4 is true, while if B = 4
we say that B is true only if A is. Thus ‘ B true if 4 is’ means that
A 1is a sufficient condition for B and vice versa, while ‘B true
only if A is’ means that A4 is a necessary condition for B. If
A < B we say that B is true if and only if 4 is true,
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6 INTRODUCTION [1.4

Counter examples

If we have a theorem which seems likely to be true but which
may not be, usually the best way of proving it false is to find
an example where it is not true. Such an example is called a
counter example, the German ‘ Gegenbeispiel’ being sometimes
used. A famous instance is Fermat’s theorem on binary powers,
which states that the number 22" +1 is prime for all #n. Although
Fermat believed in the truth of this theorem he could not prove
it, and in 1732 Euler discovered that if n = 5 the number is
composite: this counter example of course immediately dis-
proves the theorem.

As a further example, it is easily proved that if Zu, is con-
vergent then u, - 0, and we may think that the converse is true,
but u, = 1/r gives a counter example.

If after due consideration we cannot find a counter example
we may reasonably suppose that the theorem is true, but this
of course is not proved, and it may well be false in some obscure
cases. Goldbach’s conjecture, that every even integer may be
expressed as the sum of two primes, has never been proved, but
no counter example has been discovered and most mathe-
maticians believe in the truth of the conjecture.

Reductio ad absurdum

A common way of proving a theorem is to assume that it is
false and then to show that this leads to a logical contradiction
or to an obviously false result. For example, to prove that there
is no greatest prime we assume that there is and let the greatest
prime be n. Then n! +1 (where n! means the product n (n—1)
(n—2)...2.1)eitheris a prime greater thannor has a prime factor
greater than n (all integers from 2 to n are factors of n! and so
cannot be factors of n! +1), and in either case we have a con-
tradiction of our supposition. This method is particularly
common in proving a converse: the theorem that if the opposite
angles of a quadrilateral are supplementary then the quadri-
lateral is cyclic is usually proved in this way, assuming the
basic theorem that the opposite angles of a cyclic quadrilateral
are supplementary.
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1.5} INTRODUCTION 7

1.5. Historical summary

The first notable algebraists were the Arabs. The Egyptians,
Greeks and Hindus had all done a little work in this subject,
but the Arabs were the first to concentrate on it, mainly in
connection with astronomy, and progressed so far as the
solution of cubic equations. The word ‘algebra’ is a corruption
of the Arabic ‘al-jebr’, meaning the transposing of negative
terms in an equation to the other side.

At the time of the Renaissance, algebra became one of the
main fields of mathematical study. Cubics were solved for the
general case by Tartaglia (about 1499-1557) and Cardan (1501
76) and quartics by Ferrari (1522-65). Vieta (1540-1603) intro-
duced letters to stand for unknown quantities, while the
symbols + and — appear first in a book printed in 1489, and
the exponential notation for powers was introduced by Descartes
(1596-1650).

Newton (1642-1727) worked on the theory of equations and
the binomial theorem, and about this time negatives came to be
accepted as proper numbers. Complex numbers were also used
but were imperfectly understood until later. Argand’s famous
paper on the geometrical interpretation of imaginary quantities
was published in 1806, while Gauss finally put complex numbers
on an equal footing with the real numbers in 1831. Gauss gave
the first fully satisfactory proof of the ‘Fundamental Theorem
of Algebra’ that a polynomial equation of the nth degree has
exactly n roots, his first proof being discovered in 1797.

Determinants were studied by Wronski (1778-1853), Cauchy
(1789-1857) and Jacobi (1804-51) among others, while matrices
were introduced at about the same period, much of the work
being by Hamilton (1805-65) and Cayley (1821-95). Hamilton
also invented quaternions, the first non-commutative system to
be studied intensively, which were superseded for practical
purposes by matrices and tensors. The theory of invariants and
linear transformations, connected with matrix theory and
leading to modern linear algebra, was developed by Cayley and
Sylvester (1814-97) and by Hermite (1822-1901).

A milestone in the development of modern abstract ideas was
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8 INTRODUCTION [1-5

Boole’s publication of The Laws of Thought in 1854. This applied
mathematics to logic and marked the first real break from
traditional ideas, based on practical ideas of number and space.
Boole’s work showed that algebra is not necessarily concerned
with numbers but that the processes may be used much more
generally,

The beginnings of the ideas of group theory lay in the
solubility of equations. Quartics had been solved by Ferrari
in the sixteenth century but nobody had been able to give a
solution for the general quintic, and this was finally proved
impossible by Abel in 1826. Galois simplified his solution in
about 1830 and discovered a great deal about groups in con-
nection with the solution of equations, besides investigating
invariant subgroups and the theory of fields. He was the first
to use the word ‘group’ in the modern sense. The theory was
elaborated by Lagrange, Cayley and particularly Cauchy (in
about 1844-46). At this early period groups were thought of in
terms of permutations or substitutions, or sometimes in con-
nection with residues (Euler) and number theory. Definitions
of abstract groups were given by Kronecker in 1870 and later
simplified. Other notable early workers in group theory were
Jordan (composition series and conditions for groups to be
soluble), Sylow (1832-1918) (subgroups), Sophus Lie (1842-99)
(topological groups) and Klein (groups of the regular polyhedra).

Topology, originally known as ‘analysis situs’, was studied by
Euler and others, but was only gradually recognised as a separate
subject, distinct from geometry.

In the present century the growth of abstract ideas has been
rapid. Many algebraic systems have been studied and research
is still active both in the ‘pure’ algebra of groups, rings and
fields and more recently in algebra applied to topological
structures.
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2
SETS

2.1. The idea of a set

A set is merely a collection of objects. Although the idea is
basically simple, and indeed hardly seems to need stating, it is
the most important concept in mathematics. (The latter has
even been described as being the study of various aspects of set
theory!) The reason is that mathematics is essentially a process
of abstraction—we select certain properties of the objects with
which we are working and apply the laws of logic to deduce
further properties. We cannot do this without putting some
restriction on our objects: we deal, in a certain piece of work,
only with objects which are in a given set.

It may not at first sight appear obvious that elementary
mathematics restricts itself in this way. We tend to think of
arithmetic as applying to everything, but of course this is a
false idea. Arithmetic in the first instance is concerned merely
with the properties of numbers—we do it in the set of numbers.
Even here we work in different sets at different stages. At first
we restrict ourselves to the set of positive whole numbers, which
we later extend to include fractions, then negatives, and finally
we do our arithmetic within the set of all real numbers. When
we apply our arithmetic to problems we extend the sets that we
use to include, for instance, all objects which have a monetary
value, or all baths with two taps (in the famous calculations of
this type). Notice, however, that the properties which we
abstract from these sets are precisely those which are possessed
by ordinary numbers. There is no new mathematics involved,
and so these sets of practical objects have little purely mathe-
matical interest.

When we start algebra we still, in the elementary stages, keep
within the set of numbers. We let x ‘stand for’ any number.
We very easily lose sight of the basic set, and later we start using
our letters to stand for any complex number, thus extending our
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10 SETS 2.1

real number domain of operations to the complex domain.
Remarkably our algebra is nearly the same, and the purpose of
this book is to show how we can still keep the same algebra,
or at any rate some of it, when working in sets other than the
real or complex numbers.

The study of geometry leads us into new sets. We work, in
Euclid, within any one of the set of planes, we deal with the
set of points in that plane, and with the sets of lines and triangles.
Our results apply to the sets of objects which satisfy certain
postulates.

In advanced mathematics more varied sets are encountered.
Differentiation can be performed only within the set of differ-
entiable functions (i.e. functions which possess a derivative at a
certain point, a property which by no means all functions have).
There is a separate set of integrable functions. We are interested
in the set of convergent series—we cannot speak of the sum of
a series that isn’t convergent. The methiod of induction applies
only to the set of integers. We make excursions into the set of
vectors.

The above examples are of mathematical sets, but of course
the idea may be applied to any collection of objects. The objects
are called elements. They may be of any type, and even of varied
types. The set may consist of a finite number of elements, or
of infinitely many. We may not even know how many. So long
as we can say of any object that it is either an element or is not,
then we have defined a set. Thus we may consider the set of
all mammals who have been parents of live-born young that
have ever lived. It would be difficult to give an estimate of the
size of this set but, given any object, it is possible to tell whether
or not it is in the set. (At least it is possible in theory, provided
we have an exact definition of mammal.) No object that is not
a mammal need be considered and every mammal either has
been a parent or has not. Notice that the definition is precise.

The above example has a simple definition, but this need not
be so. Any selection of, say, ten thousand insects forms a set,
and there may be no obvious connection between the elements
in this case. We may even take ten thousand insects and one
jam-jar and thus form another set. The elements may even be
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