

Physiology of mammals and other vertebrates

Physiology of mammals and other vertebrates

Second edition

P. T. MARSHALL Head of Biology

The Leys School Cambridge

G. M. HUGHES

Professor of Zoology and Head of Research Unit for Comparative Animal Respiration University of Bristol

CAMBRIDGE UNIVERSITY PRESS

CAMBRIDGE LONDON · NEW YORK · NEW ROCHELLE MELBOURNE · SYDNEY

> CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Tokyo, Mexico City

Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9780521295864

© Cambridge University Press 1965, 1980

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 1965 Reprinted with corrections 1967 First paperback edition 1967 Reprinted 1972 Second edition 1980 Re-issued 2013

A catalogue record for this publication is available from the British Library

ISBN 978-0-521-22633-2 Hardback ISBN 978-0-521-29586-4 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. Information regarding prices, travel timetables, and other factual information given in this work is correct at the time of first printing but Cambridge University Press does not guarantee the accuracy of such information thereafter.

Contents

	Preface to the second edition	page xiii xiv
	Preface to the first edition	XIV
1	Nutrition	1
	1.1 The basic biochemistry of mammalian metabo	lites 1
	1.2 Carbohydrates	1
	1.2.1 General features	1
	1.2.2 Monosaccharides	2
	1.2.3 Disaccharides	4
	1.2.4 Polysaccharides	5
	1.3 Lipids	7
	1.4 Proteins	9
	1.4.1 Major classes of protein in the mammal	
	1.4.2 Nucleoproteins	12 12
	1.4.3 Proteins as part of the diet1.5 Vitamins	
	1.5 Vitamins 1.5.1 Vitamin A	13 13
	1.5.2 Vitamin B	15
	1.5.3 Vitamin C: ascorbic acid	19
	1.5.4 Vitamin D: calciferol	19
	1.5.5 Other vitamins	20
	1.6 Mineral salts	20
	1.7 Water	21
	1.8 Summary	22
2	Enzymes	23
	2.1 General properties	23
	2.2 How enzymes work	25
	2.3 Enzyme inhibition	28
	2.4 The classification of enzymes	28
	2.5 Factors controlling the rates of enzyme reaction	ons 30
	2.5.1 Temperature	30
	2.5.2 Hydrogen ion concentration	31
	2.5.3 Particular property of the given enzyme	31

٧

Contents

3	Dig	estion	33		
	3.1	The nature of digestion	33		
	3.2	The organisation of the alimentary canal	34		
	3.3	The epithelial lining of the alimentary canal	35		
		The principles of coordination of secretion in the			
		alimentary canal	37		
	3.5	The human alimentary canal	38		
		3.5.1 The teeth and the mechanism of chewing	38		
		3.5.2 The buccal cavity	41		
		3.5.3 The oesophagus	42		
		3.5.4 The stomach	43		
		3.5.5 The duodenum	47		
		3.5.6 The ileum 3.5.7 Movements of the small intestine	53 54		
		3.5.8 The large intestine	55		
		3.5.9 Movements of the large intestine and elimination	33		
		of faeces	55		
	3.6	Modifications of the alimentary canal found in mammals			
	5.0	other than man	56		
		3.6.1 The teeth and jaws	56		
		3.6.2 The alimentary canal of herbivores	59		
		3.6.3 The chemistry of ruminant digestion	60		
	3.7	The digestive system in non-mammalian vertebrates	62		
		3.7.1 Fishes	62		
		3.7.2 Amphibians	63		
		3.7.3 Reptiles	63		
		3.7.4 Birds	64		
4	Respiration, gas exchange and transport systems 6				
		Respiration in mammals	67		
		4.1.1 The respiratory tract	67		
		4.1.2 The alveoli	69		
		4.1.3 Ventilation	70		
	4.2	The nervous coordination of respiration	74		
	4.3	Transport of the respiratory gases	76		
		4.3.1 The nature of haemoglobin	77		
		4.3.2 Combination with oxygen	78		
		4.3.3 Relationship between haemoglobin and			
		myoglobin	80		
		4.3.4 Transport of carbon dioxide	81		
	4.4	Respiration in other vertebrates	82		
		4.4.1 Dogfish4.4.2 The lungs and ventilation mechanisms in	82		
		amphibians and reptiles	86		

vi

Contents

		4.4.3	Birds	89
	4.5	Tissue	e respiration	90
			The role of energy transfer substances	90
		4.5.2		91
	4.6	Carbo	phydrate respiration	93
			Glycolysis: the first stage of energy exchange	93
		4.6.2	Oxidative decarboxylation and the tricarboxylic	
		1.60	acid (TCA) cycle	96
		4.6.3	The respiratory chain: the process of greatest energy exchange	97
		464	Efficiency of energy exchange in respiration	100
			Mitochondria: their structure related to their	100
			function	101
5	The	olein 4	and tamparature control	104
J			and temperature control	
	5.1		tructure of mammalian skin	104 104
			The keratins and related molecules The epidermis	104
			The dermis	103
	5.2		fications of the skin in non-mammalian vertebrates	108
	J. L		Elasmobranchs	108
			Teleosts	109
			Amphibians	109
			Reptiles	110
			Birds	110
	5.3	The c	control of body temperature	111
		5.3.1	Terminology	111
		5.3.2	Temperature control in ectothermic vertebrates	112
		5.3.3	Temperature regulation in birds and mammals	113
		5.3.4	Special problems of endotherms living in climatic	
			extremes	114
			Mechanisms of temperature regulation	115
		5.3.6	Temperature control in man as a representative	115
			mammal	115
6	Circ	culator	y systems and the blood	118
	6.1	The h	eart and circulation of vertebrates	118
		6.1.1	The double circulation of mammals and birds	118
		6.1.2	Chambers of the heart	118
		6.1.3	Cardiac muscle and its properties	120
		6.1.4	The origin and conduction of the heart beat	121
		6.1.5	Pressures within the circulatory system	124
		6.1.6	Heart output and its regulation	125
		6.1.7	1 7	126
		6.1.8	Development of the aortic arches	127

vii

Contents

	6.1.9 The heart and circulatory systems of fishes, v	vith
	particular reference to the dogfish	130
	6.1.10 The heart of frogs	133
	6.1.11 The heart of modern reptiles	137
	6.1.12 The heart of birds and mammals compared	137
	6.1.13 Phylogenetic considerations	137
	6.2 The blood	139
	6.2.1 The structure of blood	139
	6.2.2 Exchange between the capillaries and the tiss	
	6.2.3 The lymph	145
	6.2.4 The reticulo-endothelial system	147
	6.3 The body's defences against infection	148
	6.3.1 The causative agents	148
	6.3.2 Antigens and antibodies	151
	6.3.3 The immune response	153
	6.3.4 Sensitisation to antigens and types of immun	ity 156
	6.4 The liver	160
7	Excretion	163
	7.1 Water balance	164
	7.2 Inorganic ions	165
	7.3 The kidney	167
	7.3.1 Origin of the kidney	167
	7.3.2 How the kidney operates	167
	7.3.3 The blood supply	168
	7.3.4 The glomerulus	169
	7.3.5 Acid-base regulation and the part played by	
	kidney in the maintenance of a constant pH	175
	7.3.6 Control of kidney output	177
	7.4 The sources of nitrogenous excretory substances in	
	urine of mammals	179
	7.4.1 Urea	179
	7.4.2 Ammonia	181
	7.4.3 Creatinine	181
	7.5 A comparative account of water and salt regulation	
	the vertebrates	181
	7.5.1 Fishes	181
	7.5.2 Amphibians	184
	7.5.3 Reptiles	184
	7.5.4 Birds	184
	7.5.5 Mammals	185
8	The skeleton and muscles	186
	8.1 Bone and the skeleton	186
	8.1.1 Function	186

viii

Contents

		8.1.2 Structure	186
		8.1.3 Endocrine control of bone synthesis	187
		8.1.4 Adaptations of bone	188
		8.1.5 The joints	189
	8 2	The skeleton of the mammal	190
	0.2	8.2.1 The axial skeleton	190
		8.2.2 The appendicular skeleton	194
	0.0		
	8.3	Cartilage and connective tissue	197
		8.3.1 Cartilage	197
		8.3.2 Connective tissue	199
	8.4	Muscles	199
		8.4.1 Function	199
		8.4.2 Gross structure	200
		8.4.3 Detailed structure	201
		8.4.4 The muscle proteins and their relation to each	
		other and to the fine structure of the muscle	201
		8.4.5 Nerve impulses and the part played by calcium	
		ions	204
		8.4.6 Energy exchanges in contraction	205
		8.4.7 Innervation	205
9	Locomotion		
	9.1	Swimming	207
		Terrestrial locomotion and its evolution	211
	9.2	9.2.1 The functional arrangement of the muscles of the	211
		limbs	214
		9.2.2 Adaptations for running	216
		9.2.3 Metabolic cost of running in mammals	218
	0.2	· ·	
	9.3	Flying	219
		9.3.1 Feathers	219
		9.3.2 Structure of the bird's wing	220
		9.3.3 Modifications of the limb girdles	222
		9.3.4 Types of flight	222
10	Nervous coordination		
	10.	1 Structure and origins of the nervous system	226
	10.	2 Units of nervous function	226
		10.2.1 Neurone	226
		10.2.2 Nerve impulse	228
		10.2.3 The synapse	231
		10.2.4 Integrative mechanisms	233
	10	3 Receptor organs	234
	10.	10.3.1 Basic mechanisms	234
		10.3.2 Classification	234
			237
		10.3.3 Mechanoreceptors	431

ix

Contents

		10.3.4 Sound and equilibrium receptors 10.3.5 Light receptors	241 249
	104	The central nervous system	255
	10.4	10.4.1 The spinal cord	255
		10.4.2 The brain	262
11	The	endocrine system	277
	11.1	The nature of hormones	277
	11.2	The hypothalamus-pituitary complex	278
		11.2.1 Anatomical relations of the complex 11.2.2 Functional integration between the	278
		hypothalamus and the pituitary	280
	11.3	Role of hormones in the coordination of growth and metabolism	281
	11.4	Hormones and stress reactions in the body	290
		The mechanisms of hormone action	292
		11.5.1 General considerations	292
		11.5.2 Hormones acting on genes and protein	
		synthesis mechanisms	293
		11.5.3 Hormones and enzymes: the 'second messenger' hypothesis	296
	11.6 Examples of hormone action in non-mammalian		
		vertebrates	297
		11.6.1 Fishes	297
		11.6.2 Amphibians	298
		11.6.3 Reptiles 11.6.4 Birds	299 300
		11.0.4 Birds	300
12	Repr	roduction	301
	12.1	Introduction	301
	12.2	Fishes	302
		12.2.1 Sex hormones in fishes	305
	12.3	Amphibians	305
		12.3.1 Sex hormones in amphibians	306
	12.4	Reptiles	308
		12.4.1 Sex hormones in reptiles	309
	12.5	Birds	309
		12.5.1 Sex hormones in birds	311
	12.6	Mammals	313
		12.6.1 The monotremes (or Prototheria)	313
		12.6.2 The marsupials (or Metatheria)	313
		12.6.3 The Eutheria	314

X

Contents

12.6.4	Gametogenesis: the development of the sex	
	cells	316
12.6.5	Sex hormones in the male	320
12.6.6	Sex hormones and cycles in the female	320
12.6.7	Other aspects of mammalian reproduction	330
Index		331

Preface to the second edition

Since the first edition was published in 1965 there have been considerable advances in knowledge and understanding of physiology. This edition incorporates new findings, changes of emphasis and new directions in the comparative physiology of mammals and other vertebrates.

Thus while the general aims and organisation of the work remain largely the same as set out in the preface to the first edition, new knowledge and understanding have necessitated a thorough reassessment of the text.

The immediate changes will be seen in the depth of treatment of homeostatic mechanisms and of coordination and in the details of biochemistry and function at the level of the cell. The extensive use of the dogfish and the frog as 'set' types has been changed and much more use is made of comparative data from a wide range of non-mammalian vertebrates. The final chapter on reproduction has been greatly extended.

While the major rewriting of the text has been carried out by Peter Marshall, the co-author, Professor George Hughes, has read and commented on all the new material. For specialised sections we are grateful to Dr Robert Reid of the University of York for his comments on the cell biochemistry, to Dr David Aidley of the University of East Anglia and Dr Ian A. Johnston of the University of St Andrews for their help with the section on muscles, and to Dr Barry Roberts of the Plymouth Laboratory for his further help with the revision of the chapter on nervous coordination. Dr D. Brown of Addenbrooke's Hospital, Cambridge, was of great help in interpreting recent theories relating to immunity. Dr Peter Hogarth of the University of York has also read and made many helpful comments on the whole of the current text.

The checking and editing of this edition have been a formidable task and we are particularly indebted to Mrs Jane Farrell of the Cambridge University Press for her expert work in this respect. Many of the new drawings and diagrams, which form an important feature of the new edition, are the work of John Fuller and to him we also express our thanks.

P.T.M. August 1979

G.M.H.

xiii

Preface to the first edition

Biology is a very large and varied subject which may be subdivided in many different ways. A common and usual one is to consider living organisms at a series of different levels, beginning with whole populations, then at the individual, organ system, tissue, cellular and molecular levels. Throughout the history of biology there have been changes in the particular level which has received most study and also shifting fashions in the approach to a given or to several levels which were in vogue at that particular time. Often these fashions can be related to developments of new techniques which require the repetition and interpretation of previous work. Some aspects of the biological approach remain constant despite these winds of change and one of these is the relation between structure and function. This relationship can be discussed at all levels of organisation and it is basic to the approach given in this book.

A great deal of this approach tends to be at the organ system level and as such continues to present problems to the biologist, but at the present time there is a great deal of emphasis at a molecular level so that no modern functional approach to the subject would be complete without some inclusion of the biochemistry of cellular activities. In this field we try to present a brief account of the rapidly expanding aspects in the context of more classical biology and to emphasise some of the principal biochemical processes rather than give a detailed account of metabolic pathways. Here, as well as elsewhere in the book, space has not been sufficient to allow a critical approach, and while much of the anatomical and physiological material is now well established the same is not necessarily true of the most recent biochemical work.

Despite the interest and importance of cellular function much of it is hardly suitable for teaching or demonstration to elementary classes and it is the physiological approach to the vertebrates that forms, and is likely to form, the bulk of first courses in animal biology. It is the experience of the authors and many others in teaching biology to sixth-formers and students at university that few recent textbooks have attempted to summarise in an elementary way the vast knowledge gained by mammalian physiologists. Although basically this is a textbook of physiology it differs from most standard texts in that it has not been written primarily for medical students. Because of this, much comparative material, both anatomical and physiological, has been included. Relatively large

xiv

Preface to the first edition

amounts of anatomical material are included in order to emphasise to the student the importance of considering form and function together and not in isolation from one another. Furthermore, comparative material has been included to show the need for further investigation in this sort of study, both for its own sake and also because of the light it may shed on the functioning of mammals. The value of close understanding between comparative physiologists, mammalian physiologists and clinical physiologists is apparent at the research level at the present time and perhaps, by emphasizing this in the early training of all three types of student, we may hope to encourage such co-operation further.

The presentation of such an integrated approach abounds with problems and we are aware that what is given here contains many faults both in detail and in its general attitudes. It is, however, because we believe there is a great need for integration at this level of teaching that we have thought such an attempt to be worth while. We also know that there are many others who are far more qualified to write a book of this sort than ourselves and hope that if any of them should read our attempt they will be good enough to let us know where they think we have made errors. Some of the information has been presented in a diagrammatic way which has inevitably required a great deal of simplification. We only hope that the simplifications that we have made and the selection of data presented will not give rise to any fundamental misconceptions at this elementary stage of teaching.

In summary then, we hope to have shown the relevance of the study of vertebrates in the A level syllabuses to the potential medical student or biologist. The major object of the book is to present data in a way which will prepare the sixth-former for the type of functional approach he will have at the university.

Because of our awareness of the great breadth of the field that is covered in this book we have sought advice from many people whom we should like to thank. First of all, we should particularly like to thank Dr George Salt for suggesting the cooperation between ourselves, and for his constant advice during the production of this book. We are grateful to Dr W. E. Balfour of the Physiological Laboratory, Cambridge, for reading through the whole typescript. Individual chapters have been read by several of our friends, including that on the endocrine system by the late Dr H. E. Tunnicliffe; that on disease by Dr F. E. Russell; on excretion by Dr A. P. M. Lockwood; and on the nervous system by Dr B. M. H. Bush. Much of the biochemical work was read critically by Dr R. Gregory of the Biochemistry Department. The diagrams of the cell and mitochondrion were devised by Dr A. V. Grimstone. We also wish to thank Mr B. Roberts for his helpful comments on the proof.

Throughout the many problems that have arisen during publication we have had much help from the editorial staff of the Cambridge University Press, to whom we would like to express our thanks.

We believe that an important feature of the book is the original

Preface to the first edition

drawings of histological and skeletal material made available by several laboratories, including Anatomy, Physiology and Zoology. The drawings were done by T. W. Armstrong, while still a pupil at The Leys School, and to him we would like to express our thanks.

August 1964

G.M.H. P.T.M.

xvi