> IUPAB Biophysics Series sponsored by The International Union of Pure and Applied Biophysics

Photosynthesis Physical mechanisms and chemical patterns

CAMBRIDGE

Cambridge University Press 0521294436 - Photosynthesis: Physical Mechanisms and Chemical Patterns - Roderick K. Clayton Frontmatter More information

IUPAB Biophysics Series

sponsored by The International Union of Pure and Applied Biophysics Editors: Franklin Hutchinson Yale University Watson Fuller University of Keele Lorin J. Mullins University of Maryland

- 1 Walter Harm: Biological effects of ultraviolet radiation
- 2 Stanley G. Schultz: Basic principles of membrane transport
- 3 Edward G. Richards: An introduction to the physical properties of large molecules in solution
- 4 Roderick K. Clayton: Photosynthesis: physical mechanisms and chemical patterns

Photosynthesis Physical mechanisms and chemical patterns

RODERICK K. CLAYTON

Division of Biological Sciences Cornell University, Ithaca, New York

CAMBRIDGE UNIVERSITY PRESS CAMBRIDGE LONDON NEW YORK NEW ROCHELLE MELBOURNE SYDNEY

ambridge University Press	
521294436 - Photosynthesis: Physical Mechanisms and Chemical Patterns - Roderick K	
layton	
ontmatter	
ore information	
ore information	

Published by the Press Syndicate of the University of Cambridge The Pitt Building, Trumpington Street, Cambridge CB2 1RP 32 East 57th Street, New York, NY 10022, USA 296 Beaconsfield Parade, Middle Park, Melbourne 3206, Australia © Cambridge University Press 1980 First published 1980 Typeset by Automated Composition Service Inc., Lancaster, Pennsylvania Library of Congress Cataloging in Publication Data Clayton, Roderick K. Photosynthesis. (IUPAB biophysics series; 4) Includes bibliographies and index. 1. Photosynthesis - Research. 2. Photosynthesis. I. Title. II. Series: International Union for Pure and Applied Biophysics. IUPAB biophysics series; 4. QK882.C58 581.1'3342 79-27543 ISBN 0 521 22300 8 hard covers ISBN 0 521 29443 6 paperback

Transferred to digital printing 2003

To B. J. Clayton, wife and colleague

CONTENTS

	Foreword page	xi
	Preface	xiii
	Part I. Research in photosynthesis: basic developments to about 1960	1
1	The chemical nature of photosynthesis	3
1.1	Early history	3
1.2	Photosynthesis as an oxidation-reduction process	4
1.3	Digression: qualitative aspects of oxidation and reduction	6
1.4	Modifications of van Niel's representation of photosynthesis	8
1.5	Digression: structures of some molecules important in	
	photosynthesis	15
	Suggested readings	18
2	The roles of chlorophylls and other pigments	19
2.1	Digression: light and molecules; excited states and energy	17
	transfer	19
2.2	Two functions of chlorophyll: light harvesting and	
	photochemistry	27
2.3	The evolution of photosynthetic organisms and the impact of	
2.4	oxygen in the biosphere	31
2.4 2.5	The diversification of photosynthetic pigments	37
4.5	Digression: factors that govern the migration of excitation	
	energy among antenna pigments and to photochemical reaction centers	• •
2.6	The organization of antenna pigments in relation to energy	39
2.0	transfer	40
	Suggested readings	43 49
		49
3	The cooperation of two quanta or two photosystems in	
	photosynthesis	51
3.1	The quantum efficiency of photosynthesis: a renowned former	
	controversy	51
		vii

Cambridge University Press	
0521294436 - Photosynthesis: Physical Mechani	isms and Chemical Patterns - Roderick K.
Clayton	
Frontmatter	
Moreinformation	

viii Contents

3.2	Evidence for two distinct components of chlorophyll and two photochemical systems in oxygen-evolving photosynthesis	53
	Suggested readings	58
4	Major digression: molecular physics and spectroscopy; quantum energy and redox energy; measurements involving	
	light	59
4.1	Covalent bonding; electron spin, radicals, and triplet states;	07
,	microwave spectroscopy	59
4.2	Molecular spectroscopy: electron orbitals, energy states, and	
	optical absorption spectra	63
4.3	Quantum energy and the energy of oxidation and reduction	67
4.4	The measurement of light and its uses in photobiology	71
	Suggested readings	78
	Part II. Pigment-protein complexes in photosynthetic	
	membranes: their compositions, structures, and functions	79
_		
5	Components of the photosynthetic membranes of bacteria:	
	composition and function in energy transfer and photochemistry	88
5.1	The photochemical reaction centers	88
5.1 5.2	Digression: relationships between absorption, fluorescence, and	00
0.2	photochemistry	97
5.3	Fluorescence in reaction centers and in photosynthetic	
	membranes, in relation to energy transfer and photochemistry	101
5.4	Antenna pigment-protein components: varieties, association	
	with reaction centers, and physiological regulation	105
	Suggested readings	109
6	Photosynthetic membranes of plants: components and their	
Ũ	molecular organization; energy transfer and its regulation	111
6.1	Pigment-protein components of chloroplasts; their relation to	
	gross visible structures and to Photosystems 1 and 2	111
6.2	Fine structure of thylakoid membranes as seen with the	
	electron microscope; relation of structural features to	
	functional components	116
6.3	Fluorescence and energy transfer in the thylakoid membrane,	
	and the control of quantum distribution to the two	
	photosystems	119
6.4	Antenna components and energy transfer in diverse types of	105
	algae and bacteria	125
	Suggested readings	130
7	Measurements with polarized light: interactions of molecules	
	in excited states; orientations of pigments in photosynthetic	
	tissues	132

	Contents	ix
7.1	Digression: theory and general methods involving polarized light	132
7.2	Spectroscopy of chlorophylls; measurements with polarized	
	light as applied to photosynthetic tissues	146
	Suggested readings	162
	Part III. Photochemical charge separation, secondary transport	
	of electrons and protons, and oxygen evolution	165
8	Reaction centers: photochemical charge separation and	
8.1	interaction with nearest electron donors and acceptors Charge separation in reaction centers of photosynthetic	167
	bacteria	167
8.2	Reaction centers of Photosystems 1 and 2 of green plants and	
	algae Suggested readings	180
		190
9	Oxygen evolution; secondary transport of electrons and	
9.1	protons Photomethylic and heli	193
9.1 9.2	Photosynthetic oxygen evolution	193
9.4	Patterns of electron and proton transport surrounding Photosystems 1 and 2	202
9.3	Patterns of electron and proton transport in photosynthetic	203
	bacteria	213
	Suggested readings	226
	Part IV. The formation of ATP and the assimilation of carbon	
	dioxide	229
10	Electrochemical gradients and the formation of ATP	231
10.1	Hypotheses for the coupling of electron transport to ATP	_
	formation	231
10.2	Light-induced electrochemical gradients in photosynthetic	
10.2	membranes	237
10.3	ATP formation and the energy efficiency of photosynthesis	248
	Suggested readings	254
11	Carbon assimilation by plants	256
11.1	The reductive pentose cycle; photorespiration	256
11.2	The pyruvate carboxylation pathway	260
	Suggested readings	261
	Epilogue: Some directions of basic and applied research on	
	photosynthesis	263
	Notes	266
	Index	200

FOREWORD

The origins of this series were a number of discussions in the Education Committee and in the Council of the International Union of Pure and Applied Biophysics (IUPAB). The subject of the discussions was the writing of a textbook in biophysics; the driving force behind the talks was Professor Aharon Katchalsky, first while he was president of the Union, and later as the honorary vice-president.

As discussions progressed, the concept of a unified text was gradually replaced by that of a series of short inexpensive volumes, each devoted to a single topic. It was felt that this format would be more flexible and more suitable in light of the rapid advances in many areas of biophysics at present. Instructors can use the volumes in various combinations according to the needs of their courses; new volumes can be issued as new fields become important and as current texts become obsolete.

The International Union of Pure and Applied Biophysics was motivated to participate in the publication of such a series for two reasons. First, the Union is in a position to give advice on the need for texts in various areas. Second, and even more important, it can help in the search for authors who have both the specific scientific background and the breadth of vision needed to organize the knowledge in their fields in a useful and lasting way.

The texts are designed for students in the last years of the standard university curriculum and for Ph.D. and M.D. candidates taking advanced courses. They should also provide a suitable introduction for someone about to begin research in a particular field of biophysics. The Union is pleased to collaborate with the Cambridge University Press in making these texts available to students and scientists throughout the world.

> Franklin Hutchinson, Yale University Watson Fuller, University of Keele Lorin J. Mullins, University of Maryland *Editors*

PREFACE

The aim of this book is to introduce students of science to the methods and present state of research in photosynthesis. As befits a monograph on a topic in biophysics, physicochemical aspects of the subject are emphasized. The treatment of metabolic and physiological areas is confined to the earlier phases of ATP formation and carbon assimilation. The treatment of physical aspects is weighted heavily toward bacterial photosynthesis because the photosynthetic bacteria have afforded exceptional opportunities in elucidating physical mechanisms.

Part I describes major developments from about 1650 to 1960, emphasizing the chemical nature of photosynthesis and the roles of chlorophylls and other pigments. Part II reviews our present knowledge of the structures and components of photosynthetic tissues in relation to their function. Part III deals with the photochemistry of photosynthesis, and with the patterns of chemical events, principally electron and proton transfer, that follow the photochemistry. Part IV treats the relationships of electron and proton transport to ATP formation, and the metabolic patterns of carbon assimilation. The epilogue exposes major areas of confusion and ignorance and indicates potentially fruitful directions of research, including the development of photosynthetic systems for solar energy conversion.

This book can provide the framework for a course on photosynthesis suitable for undergraduate or postgraduate students. To meet this purpose it includes digressions into physics and chemistry, as needed for a basic understanding of the subject. These digressions can of course be passed over by the reader who is familiar with their content; they are mainly descriptive rather than analytical. I have tried to impart a knowledge of photosynthesis at the level of contemporary research; nevertheless, a student will be sufficiently prepared if he understands physics, chemistry, and biology at the level of introductory college courses for science majors. The reader will detect some redundancy in widely separated parts of the book. This is deliberate and is based on the premise that a cyclical return to some topics will help to consolidate an overall grasp of a subject as multifarious and complex as photosynthesis. The treatment is detailed and comprehensive so that students and

xiii

xiv Preface

mature investigators can visualize concretely what is required and involved in a career of research in photosynthesis.

Annotation has been restricted to a few references to specific experiments, plus a set of suggested readings at the end of each chapter. These readings are listed in the order of appearance of relevant material in the text.

I am indebted to Drs. W. L. Butler, R. E. McCarty, W. W. Parson, K. Sauer, and A. Vermeglio for valuable suggestions and critical comments on parts of this book.

R. K. C.