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THE ASYMPTOTIC SPEED AND SHAPE OF A PARTICLE SYSTEM

David Aldous and Jim Pitman

1 Introduction

We study in this paper the asymptotics as k - » of the motion
of a system of k particles located at sites labelled by the integers. This
section gives an informal description of the particle system and our results,
and the original motivation for the study.

The particles will be referred to as balls, and the sites as
boxes. The motion may be described as follows. Initially the k balls are
distributed amongst boxes in such a way that the set of occupied boxes is
connected. (A box may contain many balls, but there is no empty box between
two occupied boxes.) At each move, a ball is taken from the left-most occup-
ied box and placed one box to the right of a ball chosen uniformly at random
from among the k balls, the successive choices being mutually independent.
It is clear that the set of occupied boxes remains connected, and that the
collection of balls drifts off to infinity. It is easy to see that for each
k the k-ball motion drifts off to infinity at an almost certain average

speed s defined formally by (2.3) below. Our main result is that

kl
s, ~ e/k as k » », To be more precise:

THEOREM 1.1 A4s k 1Increases to infinity, ksk increases to e.

This result was conjectured by Tovey (private communication),
and informal arguments supporting the conjecture have been given by Keller
(1980) and Weiner (1980). Our method of proof (Sections 2-4) is to use
coupling to compare the k-ball process with a certain, more easily analysed,
pure growth process (defined at (3.3)).

Secondly, for fixed k we can define (Section 5) a random vector

(m 7,7

o™ ) describing the equilibrium proportions of balls in the (Oth,
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1st, 2nd,...) box from the leftmost occupied box at times when the left-

most box has just been cleared. We conjecture (5.9) that as k - «,

(ﬂo,nl,nz,...) converges in distribution to a certain sequence
A A A . A - i .
(po,pl,pz,...) of constants with P, =e . This would imply that for

large k the process of proportions in the k-~ball process evolves almost
deterministically. In Section 6 we show how this conjecture is related to
problems concerning a certain transformation of probability measures on the
positive integers.

The origin of the k-ball process came in work of Tovey {(1980)
on abstractions of local improvement algorithms. Consider functions f
defined on the vertices of the d-dimensional cube, with distinct real values,
and with the local-global property:

f has no local maximum except the global maximum.

(Here a Iocal maximum is a vertex 1 such that £(i) > £(3j)
for each neighbor j of i, and vertices are neighbors if they are
connected by an edge.) There is an obvious algorithm to locate the maximum
of a local-global function: move from a vertex v to the neighbor v'
for which f(v') is largest; unless v 1is a local maximum, in which case
it must be the global maximum. How good is this algorithm "on average"?

In other words, what is the expected number of steps required to locate the
maximum of a function f picked at random according to some distribution

u  on local-global functions? Now any function £ induces an ordering
Vl’v2'v3"" of vertices such that f(v,) > f(v2) > f(v3) > ..., and f

1
is local-global iff

v is a neighbor of at least one of {v 'vn—l}' n 2. (1.2)

pree
Thus a distribution u on local-global functions induces a random ordering

v ,V2,V

1 of vertices satisfying (1.2). Let Ni denote the number of

FIARE

steps required by the algorithm started at vertex Vi, so that max Ni
i

is the number of steps required from the "worst" initial vertex. Plainly

(Ni) satisfies the recurrence

(1.3)

Ni+l 1+ Nj’ where j £ 1 is the least integer for which

Vj is a neighbor of Vi
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But we can think of (Ni) as a process of balls in boxes, where ball i
corresponds to vertex Vi and the box containing ball i corresponds to
the number Ni of steps in the algorithm. Then (1.3) says the process
evolves by the (i+l)St ball being placed in the box to the right of the box
containing ball 3j, where Jj is chosen in some random way from the exist-
ing balls. And m?x Ni' the number of steps required from the worst initial
vertex, is the position of the rightmost occupied box after 2d balls have
been used. To estimate this, we need an upper bound on the speed of the
rightmost occupied box of this new "balls in boxes" process. This process
differs from the k-ball process we study-- because Jj 1is chosen in some
complicated random way involving the distribution u on local-global
functions, and the number of balls increases. But coupling arguments in

the spirit of those of Section 3 can be used to show that for certain
distributions u the speed of the rightmost occupied box of the new process

is less than the speed of the k-ball process: see Tovey (1980).

2. Preliminaries
The configuration of a finite number of balls in boxes numbered

0,1,2,... will be described by a k-tuple of nonnegative integers

X = <x1’x2"“’xk)
where k = #x 1is the total number of balls; the balls are assumed to be
labelled 1,...,k, and xj is the box number of ball number j. The
distribution of balls among boxes without regard to labelling is recorded
by the counting measure Nx = (Nig, i=0,1,...) defined by

Ni§ = #{3j: xj=i}, i=0,1,... .

So Ni* is the number of balls in box i for configuration x. The left

end Lx and right end Rx of configuration x are defined by

]

Lx = min, x_ min{i: N x > o},

&

max, X, = max{i: N,x > 0},
J ] 1~

and x 1is connected if
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Ni§ >0 for Lx < i < Rx .

The set of connected configurations of k balls will be denoted C,, and

k
we put C, = Ukck' For X ¢ Ck, i=1,...,k, define a new configuration
%" by
x% = x, except if j = 9
J J (2.1)
A
=X, + 1 if 3 =3

where 9 = %(3) is the number of the lowest numbered ball in the left end
box ILx. That is to say, gl is obtained from x by removing ball §
from box Lx and replacing it in the box to the right of ball i. Clearly

gl e C for all i =1,...,k. The discrete k-ball process is the discrete

k
time Markov chain with countable state space Ck and one step transition
matrix pk(g,g) defined by
i .
pk(gyg y =1/k , i=1,...,k . (2.2)

The speed Sy of the discrete k-ball process is the constant

s, = lim n lix(m) = lim m  RX(m) , (2.3)
m-rce - m-»o -

where (g(m), m=0,1,...) 1is a discrete k-ball process. We assert that
the limits exist almost surely and do not depend on the initial configura-
tion X(0). To see why, consider the left counting process
L
(NX(m), m = O,1,...)

where for a configuration x the left count of x 1is the vector

ng = (Nig, i=0,1,...) defined by
, i=z0. (2.4)

Indeed, for given k the left counting process is a Markov chain whose
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finite state space is the set of

¥

1

ni k and there exists d 2 1 with

<

n, > 0 for i 4, n,
i i

This motion is easily seen to be

A

unique equilibrium distribution, X

say.

k-ball process, for m 2

O for i >4d.

1 the random variable

counting vectors

LX(m) - LX(m-1)

n=(n;, 12 0) such

irreducible and aperiodic, so there is a

Now from the definition of the

is iden-

tical to the indicator of the event (Ngg(m—l)=l), which we shall refer

to as a clearance at move m. Thus

lim m LK (m)

m>e m>e

A

k(13: n0=l) a.s.

This justifies (2.3), since obviously

0 < RX¥(m) - L¥(m) < k

lim m '#{j<m Ngg(j)=l}

(2.5)

Section 7 describes

There are several other expressions for the speed Sy
some we do not use, but let us here give only one, which will be the basis

of developments in Section 5. Recall that for an irreducible Markov chain

Y(0),¥(l),... with equilibrium distribution XA, if Y(0) is given the
distribution X|A obtained by conditioning A on a set of states A,
(i) the return time
T = inf{m: Y ea}
A m
has expectation 1/A(A), and
(ii) is  Ala.

the distribution of Y(TA)

See, for example, Freedman (1971), Section 2.5. Applying this fact to

Y(m) = N(m) and A = (n: no=l), the definition of the k-ball process
implies that TA is identical to No(l). Let WV be the distribution of
N(1) when g(O) has distribution Xk](n: nO=l), and call Vk the

clearance equilibrium of the left counting process. After a change of

variables, (i) above in conjunction with (2.5) yields the formula
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1/s, = E N_, (2.6)

where the right side denotes the expectation of No when N has distribu-
tion Vy - We record also for later use a consequence of (ii) above. For
the left counting process (N(O), N(1),...),

if §(0) has distribution vk’ then so does N(NO(O)) . (2.7)

For an arbitrary initial distribution, the distribution v can still be

interpreted as the limiting distribution of N(Mn) as n » =, where Mn

is the time of the nth clearance:

= + 2 = 0.
M, M +N M), nz20, M o}

Further, Vk is the almost sure limit as n > « of the empirical distribu-

tion of the sequence N(Ml),N(Mz),...,y(Mn).

3. Speed comparisons

To facilitate comparison of the speeds Sy for different values
of k, we introduce now the continuous k-ball process. This is the Markov
process with countable state space Ck and continuous time parameter

t > O which is specified by the transition rates.
i .
x » x, rate 1, i=l,...,k . (3.1)

Here, and later in similar descriptions of transition rate matrices, off-
diagonal rates not explicitly mentioned are assumed to be zero, and the
diagonal entries are taken to make the row sums zero. Put another way,

(gt, t20) 1is a continuous k-ball process iff

X

= >
~t ¥M(t) r t20

where go,gl,...

independent Poisson process with rate k.

is a discrete k-ball process and (M(t), tz0) is an

Since t—lM(t) > k a.s., a comparison with (2.3) above shows

that the continuous k-ball process has speed
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lim L§t/t = lim Rgt/t = ksk . (3.2)
tor too

Notice that both th and RXt are determined by the counting measure

NX

£ so the speed is determined by the counting measure process

(Nxt, t20). Now so far as these counts are concerned, one can view the

transition x - x]

of a k-ball process as the creation of a new ball in
box xj+l, together with simultaneous annihilation of a ball in the left-
most occupied box Lx. From this point of view the motion proceeds as if
each ball were splitting at rate 1 into two balls, independently of other
balls. These two balls are a "mother" ball remaining in the original box
and a "daughter" ball appearing one box to the right, with annihilation of
one ball in the leftmost occupied box simultaneous with each split. This
suggests comparing the continuous k-ball process with the Markov process

whose state space is C which evolves according to the splitting

* = Y S
rules described above but with no annihilations. We call this the lateral

birth process. Its transition rates are

i+
X > xl at rate 1, 1i=1,...,#x , (3.3)

i+ . .
where x € C#x+l is defined by

i+ .
X, =x. , J=1,.. 0, 8x
J 3 ~

=x, +1, J =#)‘f+l -

In the terminology of Mollison (1978), the lateral birth process is a
particularly simple contact birth process. The next result is a special
case of more general results for branching processes and Markovian contact
processes due to Kingman (1975) and Mollison (1978), but for the sake of

completeness we shall provide a proof in Section 4.
PROPOSITION 3.4. For a lateral birth process (@t, t>0),

lim RBt/t = e a.s.
1t

To compare the progress of different processes of balls in boxes
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we introduce a partial ordering of configurations. Say x is behind vy,

or y is ahead of x, and write x < y 1iff

yox. < y. » h=0,1,...
#h 7 3n

So x <y 4iff y has more balls than x to the right of h for each box

h. (To avoid ambiguity we say box i is to the right of box h iff i 2 h,
strictly to the right of box h iff i > h, and just to the right of h iff
i = h+l, with a similar convention on the left.) Given a configuration x,
let the balls of X be ranked primarily according to their position, and
secondarily according to their label. That is to say, the rank of ball j
in configuration x is one plus the number of balls in boxes strictly to
the right of ball 3j plus the number of balls in the same box as ball j
whose labels exceed j. For each configuration x this gives a total

ordering of the balls comprising x. It is easy to see that x Sy iff

#x < #y and for each r = l,2,...,#§, the ball of rank r in x 1is to

the left of the ball with rank r in y. 1In particular, taking r =1

shows that x < y implies Rx < Ry. But, x <y does not imply Ix < Ly,

except when #x = #y.
~ ~ A
Consider now two continuous time Markov chains M and M with

state spaces C and and bounded transition

which are subsets of Cur
A

A
C
A
rate matrices @ and Q
A

A

behind M (or M stays ahead of M) if for every pair of initial
A
X

indexed by C and C respectively. Say M stays

A
configurations x and x with x < there exists an M-chain (Xt, t20)
)

A A -
and an M-chain (Xt, t>0 defined on the same probability space such that
A A
¥o = X %o = X and

A

>
%t < ¥t for all t = O.
We shall make use of the following Lemma, which is valid for Markov chains
on an arbitrary partially ordered countable set C,. (The idea here is
folklore amongst coupling theorists; Liggett (1977) applies the same idea

with a different partial ordering in investigating infinite particle systems.)
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A A AN A

LEMMA 3.6. Suppose that x £y whenever Q(x,y) > O. Suppose also that
A A , A

for every pair of states (x,X) € CXC with X < X and every state y

A A
with Q(x,y) > O there is a state y = f(x,x,y) such that

(1) y < §
(1) Q(x,y) < O(X,P)

A A,
(iii) For fixed X and X the map y - y 1s one-to-one.

A
Then M stays ahead of M.
A A
PROOF. Construct (g,g) as the Markov chain on CxC with transition rates

A A
(x,%2) ~ (y.y), rate Q(x,y)

A AAA
> (x,y), rate 9(x,y) - Q(x,y)

>

A
~ (x,y"),rate Q(x,y") ,
A A ) . ]
where y = f(§,§,¥) and y' is an arbitrary state not in the range of
A A
f(x,x,-). These transitions stay within the set {§S§}.
REMARK 3.7. In the applications below, (ii) holds with equality. The
A A
process (§r¥) above can then be described more simply by saying that X
A A
is an M-chain and that X is derived from X by letting X make a transi-

A A A A
tion from x to y iff X makes a transition from x to y = f(x,X%,y).

PROPOSITION 3.8. For each k the continuous k-ball process stays
(i) behind the continuous ﬁ-ball process if k < Q,
(ii) behind the lateral birth process,
(iii) ahead of the lateral birth process, stopped at the

time Tk that it first attains size k.

PROOF. These are simple applications of the Lemma. In each case the

mapping § = f(f,g,y) is defined like this: if y is obtained from x
by putting a ball j;st to the right of the ball ranked r 1in ¥x, where
1 << #, then y is obtained from ¥ by putting a ball just to the

K>

right of the ball ranked r in

Let ok now denote the speed of the continuous k-ball process,

so from (3.2) we have Gk = ksk where Sy is the speed of the discrete

k-ball process.
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10

COROLLARY 3.9.

172

(1) o, s op if k < K.

(ii) oy <e

(iii) o, > ERB (T, ) /ET,
where (?(t), t20) 1is a lateral birth process starting with a single ball
in box O, and Tk = inf{t: #B(t)=k}.
PROOF. In view of (3.4), (i) and (ii) follow at once from the corresponding
parts of the proposition. For (iii), consider a continuous k~ball process
(g(t), t20). By (3.8)(ii) we can construct a process (?l(t): Ostsle)

such that

l§l(t) < X(t), O <tx le,

Bl(o) is the configuration with one ball in box

RX(0) and no other balls,

Bl evolves as a lateral birth process run until

the time le it first reaches size k.

Now repeat the construction to obtain a second lateral birth
process (@2(t): 0 <t < T2k) such that
< + < <
B,(t) < X(T  +t), O <t < T,
§2(O) is the configuration with one ball in box
Rg(T }  and no other balls,

1k

52 evolves as a lateral birth process run until

the time T2k it first reaches size k.
Repeating indefinitely, one obtains a sequence of stopped
lateral birth processes Bl’Bz"" running behind portions of the k-ball

process. To be precise

<
gn(t) < g(sn_l+t), 0 <t < Tnk ’ (3.9)
= - i i i
where Sn le + Tnk' and gn(o) is a single ball in box
RB (0) = RX(S ). (3.10)
~n ~ “n-1
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