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ON THE ABSTRACT GROUP OF AUTOMORPHISMS

Ldsz16 Babai
Dept. Algebra, EStv3s University,
Budapest, Hungary.

ABSTRACT

We survey results about graphs with a prescribed abstract group of
automorphisms. A graph X is said to represent a group G if Aut'X T a.
A class ¢ of graphs is (f)~universal if its (finite) members represent
all (finite) groups. Universality results prove independence of the
group structure of Aut X and of combinatorial properties of X whereas
non-universality results establish links between them. We briefly
survey universality results and techniques and discuss some non-
universality results in detail. Further topics include the minimum
order of graphs representing a given group (upper vs. lower bounds,
the same dilemma), vertex transitive and regular representation, endo-
morphism monoids. Attention 1s given to certain particular classes of
graphs (subcontraction closed classes, trivalent graphs, strongly
regular graphs) as well as to other combinatorial structures (Steiner
triple systems, lattices). Other areas related to graph automorphisms
are briefly mentioned. Numerous unsolved problems and conjectures are
proposed.

0. AUTOMORPHISM GROUPS - A BRIEF SURVEY
In two of his papers in 1878, Cayley introduced what has since

become familiar under the name "Cayley diagrams": a graphic representa-
tion of groups. Combined with a symmetrical embedding of the diagram
on a suitable surface, this representation has turned out to be a
powerful tool in the search for generators and relators for several
classes of finite and finitely generated groups. This approach is
extensively used in the classic book of Coxeter and Moser [CM 57]

where a very accurate account of early and more recent references is
also given.

Automorphism groups of combinatorial objects with high symmetry
(projective spaces, block designhs, more recently strongly regular
graphs, two-graphs, generalized polygons) have always played an
important role in group theory (cf. [Bi 711, [Ka 751, [ST 811, [Ti 741).
A study of graphs satisfying certain strong symmetry conditions was
initiated, well ahead of time, by Tutte's fundamental paper on s-
transitive trivalent graphs [Tu 473]. A graph is s-transitive if its
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automorphism group is transitive on arcs of length s. The classifica-
tion of finite simple groups, which rumour says has recently been
completed, has a substantial effect on the study of highly symmetrical
graphs. One example 1s the result of R. Weiss [We 811 who has shown
that the bound s < 7 holds for s-transitive graphs of arbitrary valence
2 3 assuming the known list of 2-transitive permutation groups is
complete. (The completeness of this list follows from the classifica-
tion of finite simple groups [CKS 761, cf. [Ca 811.)

Another class of graphs with a high degree of symmetry are rank-3
graphs and more generally distance-transitive graphs. These are graphs
whose automorphism group acts transitively on the set of pairs of
vertices at any fixed distance. It is this class of graphs to which,
ever since the beautiful paper of Hoffman and Singleton [HS 601, methods
of linear algebra have most successfully been applied. The method is
to derive regularity conditions (in terms of numerical parameters of
the graphs) from the symmetry conditions and subsequently to translate
the combinatorial regularity into information on the eigenvalues of
associated matrices. A detalled exposition of some of the highlights
of this theory can be found in N. Biggs' excellent book [Bi 741. More
recent results involving such methods include the Cameron-Gol'fand
theorem which describes all 5-homogeneous graphs ([Ca 801, [Gnd 781;
cf. [Sm 751 and [CGS 781). (A graph is k-homogeneous if any isomorphism
between induced subgraphs on at most k vertices extends to an auto-
morphism of the graph.) Cameron has extended this result to distance-
regular graphs (under the condition of metrical 6-homogeneity) [Ca 801,
cf. [Ca x1. In fact the actual results are much stronger inasmuch as
they assume only k-regularity, a combinatorial condition which appears
to be much weaker than k-homogeneity. (For k = 2, k-regular graphs
are strongly regular; metrically 2-regular graphs are distance regular.
These conditions do not imply the presence of any non-identity auto-
morphism.) Gol'fand has now (privately) announced the classification
of all ultra-homogeneous association schemes. (Ultrahomogeneous means
k-homogeneous for all k.)

Colored, directed graphs are a natural object on which uniprimitive
(primitive but not doubly transitive) groups act. The colors correspond
to the orbits on pairs of elements. A nice introduction to the ideas
derived from this representation is given in [Ne 77]. Besides powerful
matrix methods ([FH 641, cf. [Hi 75a,bl) which are a common generaliza-
tion of the eigenvalue techniques used for association schemes [BS 5217,
[De 73] and of group representation theory, there still seems to be a
lot of room left for elementary graph theoretic considerations. The
colored digraphs satisfying certain regularity conditions implied by
(but, of course, not equivalent to) primitive group action are called
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primitive coherent configurations. A combination of inequalities
involving valence and diameter of constituent digraphs (color
classes) of such configurations have led to substantial progress on
a classical problem in group theory [Ba 811: 1f G is a

uniprimitive permutation group of degree n then |G| < exp(4v/A logzn).
(This result is sharp up to a factor of 4logn in the exponent. The
best previous bound was Wielandt's |G| < 4™ rwi 697.)

The results indicated in the above paragraphs have dealt with
graphs satisfying regularity rather than symmetry conditions and are
therefore not affected by progress in group theory. If however we
assume our graphs have a high degree of symmetry (in terms of auto-
morphisms), the classification of finite simple groups becomes relevant.
Cameron [Ca 81] mentions that J. Buczak has determined all 4-homogeneous
graphs, making a strong use of the list of finite simple groups.

Cameron himself [Ca 811 has determined all primitive permutation
(1+e)logn (¢ 5 o ynile

n » «)(assuming the classification). It turns out that all such groups
act as subgroups of Sk wr Sm on the set of ordered m-tuples of t-
subsets of a k-set where n = (E)m. One can naturally define an

groups of degree n and of order greater than n

association scheme on this set (a combination of the Hamming and
Johnson schemes). Our "large" primitive group acts on such a scheme.
Such results may motivate us to ask whether these are the only
association schemes with large automorphism groups. In particular,

is it true for some constant C that if |Aut X| > nClogn

for a strongly
regular graph X then X is either complete multipartite, or the line
graph of a complete or of a complete bipartite graph, or the comple-
ment of such a graph?

Weaker conditions of symmetry such as a vertex-transitive auto-
morphism group have interesting consequences on the structure of the
graph (cf. Problems 13-19 in [Lo 79, Ch 12]). Although only four non-
Hamiltonian connected vertex-transitive graphs are known, I don't feel
tempted to suggest that there are only finitely many of them. It
seems rather that a lack of good methods to prove non-Hamiltonicity
hinders construction of an infinity of examples.

An interesting class of vertex-transitive graphs are provided
by Cayley graphs. Since Maschke's paper [Ma 18961, continuing
attention has been given to their embeddings on surfaces ([CM 571,

[Wh 731), but little has been done to explore other graph theoretic
properties of Cayley graphs. A study of subgraphs and of the chromatic
number of Cayley graphs has been initiated by [Ba 78a,bl. It is an
open question whether there is a constant C such that the chromatic
number of any Cayley graph of a finite group with respect to an

irredundant set of generators is less than C.

© Cambridge University Press www.cambridge.org



http://www.cambridge.org/0521285143
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press
978-0-521-28514-8 - Combinatorics
Edited by H. N. V. Temperley
Excerpt

More information

Cayley diagrams play an essential role in constructing graphs
with a prescribed automorphism group. The basic question, which
groups are isomorphic to the automorphism group of a graph, was
raised by Kénig [K& 36, p.5]. One can ask the same question for all
kinds of mathematical structures in the place of graphs. This is
what B. J6nsson [Jo 72] calls the abstract representation problem.
Several significant directions of research on this problem find their
roots in the work of R. Frucht. First, Frucht proved that every
finite group is isomorphic to the automorphism group of some finite
graph [Fr 38]. Then he went on proving that one can even require
these graphs to be trivalent [Fr 49]1. In another paper [Fr 501 he
gave examples how to use graphs to construct lattices with given
automorphism groups. Furthermore, in all these papers he was very
much concerned about the size of the graphs he had constructed. There
is one more classical paper on the subject: Birkhoff proved that
every group is represented as the (abstract) group of automorphisms
of a distributive lattice [Bi U45]. These results were followed by
countless further universality results: constructions which prove
that every group is isomorphic to the automorphism group of some
object in a given class. Characteristic for the proofs is that the
structure of the groups plays little role. The extent to which group
structure could be ignored was forcefully demonstrated by results of
Pultr, Hedrlin and their colleagues who found that most results
generalize to endomorphism semigroups (even to categories).

Although there is a large number of papers proving independence
of the abstract group Aut X and various properties of the object X
(graph, ring, lattice, etc.), little has been done to establish links
between properties of X and the structure of Aut X.

The aim of the present note is to survey some aspects of the
abstract representation problem, with an emphasis on the (missing?)
link. By presenting a large collection of open problems, we try to
draw attention to the other side of a coin, one side of which has
already been studied in great detail.

Basic definitions will be given in Section 1. We give a brief
survey of some interesting universality results in Section 2.
Contraction-closed classes of graphs are investigated in Section 3.
Such classes generalize the notion of graphs embeddable on a given
surface. We give a detailed proof of the fact that most classical
simple groups are not represented as the (abstract) automorphism
group of any graph in such a class. This is an example of the non-
universality results we seek. The proof involves a study of contractions
of certain Cayley graphs. The "Subcontraction conjecture" 3.3 is hoped
to lead to a deeper understanding of the graph structure forced by
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group action. Non-universal classes of lattices are the subject of
Section U, where attempts to link combinatorial parameters such as
order dimension to the automorphism group are described. Section 5

is devoted to the problem of minimizing the size of graphs representing
a given group. In order to illustrate the methods available, we
outline the proofs of both upper and lower bounds. Clearly, refine-
ment of universality proofs yield upper bounds. Correspondingly,

lower bounds are scarce. The "Edge-orbit Conjecture" 5.21 may

indicate the possibility of an interesting lower bound. Related
results and problems on lattices conclude Section 5.

Vertex~-transitive representations of a given group are the
subject of Section 6. The graphical and digraphical regular
representation problems belong to this section. In contrast to
Section 5 which is dominated by open problems, in this section we
are able to survey many fine results.

Finally in Section 7 we consider the extension of some of the
problems treated to endormophism monoids. We outline the proof of
the basic representation theorem, keeping the minimizing problem of
the number of vertices in mind. After a brief statement of some of
the important universality results we turn our attention once again
to what we feel ought to be an organic part of the theory but is
almost entirely missing, links between the structure of the graph X
and of its (abstract) endomorphism monoid.

The reader wishing to obtain a broader view of the area of graph
automorphisms is referred to the excellent survey by P. Cameron [Ca x].
With that paper being in print, I have elected to write on this more
compact subject which presents many problems of combinatorial rather
than group theoretic nature. From among those areas closely related
to graph automorphisms but omitted from this introduction let me
mention the algorithmic complexity of graph isomorphism (cf. [Ba 80cl).
The recent breakthrough by E.M. Luks [Lu 80] signals the relevance of
the structure of the automorphism group to a depth where even the
classification of finite simple groups may become relevant.

1. DEFINITIONS, NOTATION
A digraph is a pair X = (V,E) where V = V(X) is the set of

vertices and E(X) = VxV is the set of directed edges. A graph is

E ¢
a digraph with E = E™L and with no loops. Kn stands for the complete

graph on n vertices. A vertex-coloured (di)graph is a (di)graph X
together with a function f : V » K which maps V into some sets of
colors. (f is not a good coloring in the sense of chromatic graph
theory.) An edge-coloured digraph is a set V together with a family
.,E

of binary relations E c VxV.(l,...,m are the edge-colors.)

1°°° ™
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An automorphism is an X » X isomorphism. Automorphisms preserve
colors by definition.

Let G be a group and H a set of generators for G. We define the
Cayley diagram A(G,H) to be an edge-colored digraph with vertex set
G. Colors are members of H. There is an edge of color h ¢ H joining
g to gh for every g ¢ G.

The cayley digraph T'(G,H) has the same set of vertices and edges
but no colors. (Therefore, it may have more automorphisms than
A(G,H).) T(G,H) is a cayley graph if H = H-l

are connected. Finite Cayley digraphs are strongly connected.

and 1 ¢ H. Cayley graphs

Throughout the paper, G denotes a group, n the order of G and d
the minimum number of generators of G.

Both the beginning and the end of proofs are indicated by 0.

2. PRESCRIBING THE ABSTRACT GROUP

In this section we consider the following type of problem: Given

a group G find a graph X (or a block design, a lattice, a ring, etc.)
such that the automorphism group Aut X is isomorphic to G. Such an
object X will be said to represent the group G. A class ¢ of objects
is said to represent a class G of groups if, given G e ¢ there exists
X ¢ ¢ such that Aut X = G. We call C universal, if every group is
represented by ¢. We say that ¢ is f-universal if every finite group
occurs among the groups represented by finite members of c.

The first natural question was put by Kdénig in his classic mono-
graph [K8 36, p.51: Which groups are represented by graphs? Frucht
has soon settled the question for the finite case, proving that (the
class of) graphs is f-universal. In other words:

THEOREM 2.1 [Fr 38] Given a finite group G there exists a finite
graph X such that Aut X B

Frucht's proof has since become standard textbook material [0 621,
[Ha 69), [Lo 791, [Bo 79]. The idea is (i) to observe that the auto-
morphism group of the colored directed Cayley diagram of G w.r. to
any set of generators is isomorphic to G; (ii) to get rid of colors
and orientation by replacing colored arrows by appropriate small
asymmetric (automorphism free) gadgets. The same trick applies to
infinite groups. We need many asymmetric graphs for that; they can
be obtained from a well-ordered set by adding Frucht type gadgets
between any pair a < b. We conclude that Frucht's theorem extends
to the infinite case:

THEOREM 2.2 Graphs are universal.
(See [Bi 451, [Gr 591, [Sa 601.)
The next problem that arises is to find subclasses of graphs and

classes of other (combinatorial, algebraic, topological) objects that
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are universal. This direction was again initiated by Frucht's
fundamental discovery:
THEOREM 2.3 [Fr 49]1. Trivalent graphs are f-universal.

Although, as Professor Frucht informs me, M. Milgram has found
some gap in the original proof, there are several proofs available
now (see e.g. [Lo 79, Ch. 12, Problem 8] or Section 5 of this paper).
{Fr 49] had a great impact; its merit was not just proving a theorem
but giving a new insight - an accomplishment offered by few flawless
papers.

Another fundamental result of this kind was published a few
years earlier in Spanish by G. Birkhoff:

THEOREM 2.4 [Bi U45]. Dpistributive lattices are universal.

These surprising results already foreshadow the onesidedness of
later development. Take almost any interesting class of combinatorial
or algebraic structures; this class is universal. (There are easy
exceptions: trees, for instance. Automorphism groups of finite trees
have been characterized by Pélya [PS 371 as repeated direct and wreath
products of symmetric groups. The idea goes back to Jordan [J 18691
who counted tree automorphisms. As for infinite trees, it is easy to
see that if a finite group is represented by an infinite tree then it
is represented by a finite one as well. - Groups are not universal
either: it is easy to see that for no group G (|G| 2 3) is Aut G
a cyclic group of odd order.)

Some of the universality results are straightforward. Bipartite
graphs are an example. Just take a connected graph X which is not a
cycle, and halve each edge by inserting a new vertex of degree two.
The obtained graph Y is bipartite and satisfies Aut Y S Aut X. Now,
use Theorem 2.2 to prove that bipartite graphs are universal.

It is quite easy to prove that Hamiltonian, k-connected or
k-chromatic graphs are f-universal; it is somewhat more difficult to
extend Frucht's Theorem 2.3 to regular k-valent graphs (k = 3).
Sabidussi's paper [Sa 571 proving that these and some other classes of
graphs were f-universal, was soon considered as compelling evidence to
support the view that "requiring X to have a given abstract group of
automorphisms was not a severe restriction" [Ha 69, p. 1701,

[0 62, Ch 15.3]. Izbicki proved that certain combinations of
Sabidussi's conditions are still insufficient to restrict the auto-
morphism group [Iz 57, 60]1. Universality results in algebra and
topology were inspired by de Groot's papers [Gr 58, 591; one of his
results there is that commutative rings are universal. A surprisingly
strong version of this was given by Fried and his undergraduaate
student Koll&r:
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THEOREM 2.5. ([FK79,81] Fields are universal

Finite extensions of @ are universal over finite groups. (We have
to note here that these extensions are not normal. Noether's classical
question whether every finite group is the Galois group of a poly-
nomial over @ remains open, see [Sh 54].)

From the numerous universality results for finite combinatorial
structures, let me quote some appealing ones. They are due to
E.Mendelsohn:

THEOREM 2.6 [Me 78al. Steiner triple systems as well as Steiner
quadruple systems are f-universal.
COROLLARY 2.7 [Me 78bl. strongly regular graphs are f-universal.

In order to see how 2.7 follows from 2.6, let X be a Steiner
triple system. Take its line graph L(X) (vertices are triples from
X, adjacency means non-empty intersection). Points of X correspond
to maximum cliques in L(X). Conversely, every maximum clique of more
than 7 vertices in L(X) corresponds to a point in X. (This follows,
for instance, from Deza's theorem [De 741 (see [Lo 79, Ch. 13 Probl.
171): if the intersection of every pair of more than n2—n+l n-sets
are of the same size, then these pairwise intersections coincide.)

We conclude that for [V(X)| > 15, one can recover X from L(X) hence
Aut X = Aut L(X) proving 2.7.

The proofs of 2.5, 2.6 and many other similar results start from
a graph X with given automorphism group, and build an appropriate
object X' such that Aut X T Aut X'. It is usually easy to find X' such
that Aut X < Aut X'. The task is then to make it sure that X' has no
superfluous automorphisms. There are interesting cases, however, where
even the "subgroup problem" is open.

PROBLEM 2.7. Prove for every k 2 3, that, given a finite group G,
there is a BIBD of block size k (a 2-(v,k,1l)-design) X such that
G £ Aut X.

Such X is easily found if k = pa or pa+1 (p prime): take affine
or projective spaces of high dimension over GF(pa) with the lines as
blocks. For such k one can in fact prove that BIBD's with block size
k are f-universal [Ba yl, extending the STS result of E. Mendelsohn.
CONJECTURE 2.8. BIBD's of block size kK are f-universal for any fixed
k 2 3,

We note that an affirmative answer to 2.7 is known when k is a
multiple of the order of G [Will.

Although there are many more interesting universality results
and some open problems of this kind, the literature on them has grown
out of proportion without the healthy balance of theorems that would
provide links between the group structure of Aut X and the combinat-
orial nature of X. This situation may derive largely from the nature

of the subject but to some extent also from the pressure to publish
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or perish. Techniques for constructing objects with a given auto-
morphism group are well developed, and such (sometimes easy, some-
times ingenious, often tedious) constructions dominate the subject.
There is a chronic lack of questions pointing to possible links rather
than to independence of the structure of Aut X and properties of X.

My main objective in the next two sections is to show that such links
do exist and exploring them could be a worthwhile task.

3. NON-UNIVERSAL CLASSES OF GRAPHS

Tournaments are not universal. Their automorphism groups have

odd order for the simple reason that any involution would reverse an
edge. On the other hand, every finite group of odd order can be
represented by a tournament [Mo 64] (ef. [Lo 79, Ch. 12, Problem 71]).
So this again is a universality type result rather than the kind we
seek.

Turdn asked in 1969 whether planar graphs were f-universal. The
negative answer [Ba 72] was the starting point of the author's research
in this direction. Graphs embeddable on a given compact surface were
shown to be non-universal [Ba 73] aﬁd the automorphism groups of planar
graphs have been fully described in terms of repeated application of a
generalization of wreath product, starting from symmetric, cyclic,
dihedral groups and the symmetry groups of Platonic solids (Au, Sy A5)
[Ba 751. I expect that in some sense, such structure theorems should
hold under much more general circumstances. As a first step, we find
the following non-universality result.

Contraction of a graph X onto a graph Y is a map f : V(X) > V(Y)
such that (i) u,v ¢ V(Y) are adjacent iff u = f(x), v = £(y) for some
adjacent pair x, y of vertices of X; (ii) the subgraph of X induced
by f_l(u) is connected for every vertex u of Y.

Y is a subcontraction of X if Y is a subgraph of a contraction of
X. Clearly, the class of finite graphs embeddable on a given surface
is subcontraction closed. It is also easy to see that there are sub-
contraction closed classes of finite graphs, not embeddable on any
compact surface. (Take the graphs with no block of more than 5
vertices, for instance.) The interest in subcontraction closed classes
stems among other things from Hadwiger's conjecture. For the graph
theory of subcontraction we refer to [Ma 681, [Ma 721, [0 671.

The principal result intended to illustrate our point is this.
THEOREM 3.1. [Ba 74al. If a subcontraction closed class of graphs is
f-universal then it contains all finite graphs.

The infinite version of this is still open:

CONJECTURE 3.2. If a subcontraction closed class of graphs is uni-

versal, then it contains all graphs.
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An equivalent formulation of this conjecture is the following:
Given a cardinal K prove that there is a group G such that for any
graph X, if Aut S G then X contains a subdivision of the complete
graph K.

A good candidate for such G might be a large alternating group
or some other simple torsion group.

Non-universality results immediately call for an investigation
of the structure of those groups actually represented by the class of
objects in question. As a first step toward a structure theory of
these groups, one might like to find out which simple groups are
represented. My favourite problem pertains to this question.
SUBCONTRACTION CONJECTURE [Ba 75] 3.3. Let C be a subcontraction
closed class of graphs, not containing all finite graphs. Then the
set of non-cyclic finite simple groups represented by C is finite.

Another way of stating this problem is this:

CONJECTURE 3.3'. Given an integer K find an N = N(k) such that if
G is a finite simple group of composite order greater than N(k) and
X is a graph such that Aut X S G then X has a subcontraction to the
complete graph Kk'

There are partial results in this direction. In [Ba T4a,b] it
is shown that the conclusion of 3.3' holds if G contains Z2_x Z_x 2
(the elementary abelian group of order pB) for some large grime?
(We assume G 1s simple.) Another large class of finite simple groups
G is taken care of by the following result. Let p and r be prime
numbers, p = 1 mod r and let H(p,r) denote the nonabelian group of
order pr.

THEOREM 3.4. Fror every k there is an M = M(k) such that if the finite
simple group G contains H(p,r), r > M(k) and Aut X S G then X has
a subcontraction onto Kk'

OWe sketch the proof which goes along the lines of [Ba T4al. We
continue the present discussion after Remark 3.11 so the reader wish-
ing to omit proofs may turn to that page. First one proves the
following lemma.

LEMMA 3.5. 1If Aut X S G is a finite simple group then X has a sub-
contraction Y such that (i) Y is connected, (ii) G acts as a subgroup
of Y, (iii) this action is transitive on edges and (iv) no vertex of
Y is fixed under the action of G.

(A minimal subcontraction of X satisfying (i), (ii) and (iv) will
also satisfy (iii).)

If Aut Y is transitive then Y is regular. Otherwise Aut Y has
two orbits, Y is bipartite and semiregular (vertices in each color
class have equal valences). If all vertices of Y have large valence,
a theorem of Mader yields the result:
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