Cambridge University Press 978-0-521-28414-1 — Judgment under Uncertainty Edited by Daniel Kahneman , Paul Slovic , Amos Tversky Excerpt <u>More Information</u>

Part I Introduction

1. Judgment under uncertainty: Heuristics and biases

Amos Tversky and Daniel Kahneman

Many decisions are based on beliefs concerning the likelihood of uncertain events such as the outcome of an election, the guilt of a defendant, or the future value of the dollar. These beliefs are usually expressed in statements such as "I think that \ldots ," "chances are \ldots ," "it is unlikely that \ldots ," and so forth. Occasionally, beliefs concerning uncertain events are expressed in numerical form as odds or subjective probabilities. What determines such beliefs? How do people assess the probability of an uncertain event or the value of an uncertain quantity? This article shows that people rely on a limited number of heuristic principles which reduce the complex tasks of assessing probabilities and predicting values to simpler judgmental operations. In general, these heuristics are quite useful, but sometimes they lead to severe and systematic errors.

The subjective assessment of probability resembles the subjective assessment of physical quantities such as distance or size. These judgments are all based on data of limited validity, which are processed according to heuristic rules. For example, the apparent distance of an object is determined in part by its clarity. The more sharply the object is seen, the closer it appears to be. This rule has some validity, because in any given scene the more distant objects are seen less sharply than nearer objects. However, the reliance on this rule leads to systematic errors in the estimation of distance. Specifically, distances are often overestimated when visibility is poor because the contours of objects are blurred. On the other hand, distances are often underestimated when visibility is good because the objects are seen sharply. Thus, the reliance on clarity as an indication of distance leads to common biases. Such biases are also found in the intuitive judgment of probability. This article describes three heuristics

This chapter originally appeared in *Science*, 1974, 185, 1124–1131. Copyright © 1974 by the American Association for the Advancement of Science. Reprinted by permission.

4 INTRODUCTION

that are employed to assess probabilities and to predict values. Biases to which these heuristics lead are enumerated, and the applied and theoretical implications of these observations are discussed.

Representativeness

Many of the probabilistic questions with which people are concerned belong to one of the following types: What is the probability that object A belongs to class B? What is the probability that event A originates from process B? What is the probability that process B will generate event A? In answering such questions, people typically rely on the representativeness heuristic, in which probabilities are evaluated by the degree to which A is representative of B, that is, by the degree to which A resembles B. For example, when A is highly representative of B, the probability that A originates from B is judged to be high. On the other hand, if A is not similar to B, the probability that A originates from B is judged to be low.

For an illustration of judgment by representativeness, consider an individual who has been described by a former neighbor as follows: "Steve is very shy and withdrawn, invariably helpful, but with little interest in people, or in the world of reality. A meek and tidy soul, he has a need for order and structure, and a passion for detail." How do people assess the probability that Steve is engaged in a particular occupation from a list of possibilities (for example, farmer, salesman, airline pilot, librarian, or physician)? How do people order these occupations from most to least likely? In the representativeness heuristic, the probability that Steve is a librarian, for example, is assessed by the degree to which he is representative of, or similar to, the stereotype of a librarian. Indeed, research with problems of this type has shown that people order the occupations by probability and by similarity in exactly the same way (Kahneman & Tversky, 1973, 4). This approach to the judgment of probability leads to serious errors, because similarity, or representativeness, is not influenced by several factors that should affect judgments of probability.

Insensitivity to prior probability of outcomes

One of the factors that have no effect on representativeness but should have a major effect on probability is the prior probability, or base-rate frequency, of the outcomes. In the case of Steve, for example, the fact that there are many more farmers than librarians in the population should enter into any reasonable estimate of the probability that Steve is a librarian rather than a farmer. Considerations of base-rate frequency, however, do not affect the similarity of Steve to the stereotypes of librarians and farmers. If people evaluate probability by representativeness, therefore, prior probabilities will be neglected. This hypothesis was tested in an experiment where prior probabilities were manipulated

Cambridge University Press 978-0-521-28414-1 — Judgment under Uncertainty Edited by Daniel Kahneman , Paul Slovic , Amos Tversky Excerpt <u>More Information</u>

Judgment under uncertainty

5

(Kahneman & Tversky, 1973, 4). Subjects were shown brief personality descriptions of several individuals, allegedly sampled at random from a group of 100 professionals - engineers and lawyers. The subjects were asked to assess, for each description, the probability that it belonged to an engineer rather than to a lawyer. In one experimental condition, subjects were told that the group from which the descriptions had been drawn consisted of 70 engineers and 30 lawyers. In another condition, subjects were told that the group consisted of 30 engineers and 70 lawyers. The odds that any particular description belongs to an engineer rather than to a lawyer should be higher in the first condition, where there is a majority of engineers, than in the second condition, where there is a majority of lawyers. Specifically, it can be shown by applying Bayes' rule that the ratio of these odds should be $(.7/.3)^2$, or 5.44, for each description. In a sharp violation of Bayes' rule, the subjects in the two conditions produced essentially the same probability judgments. Apparently, subjects evaluated the likelihood that a particular description belonged to an engineer rather than to a lawyer by the degree to which this description was representative of the two stereotypes, with little or no regard for the prior probabilities of the categories.

The subjects used prior probabilities correctly when they had no other information. In the absence of a personality sketch, they judged the probability that an unknown individual is an engineer to be .7 and .3, respectively, in the two base-rate conditions. However, prior probabilities were effectively ignored when a description was introduced, even when this description was totally uninformative. The responses to the following description illustrate this phenomenon:

Dick is a 30 year old man. He is married with no children. A man of high ability and high motivation, he promises to be quite successful in his field. He is well liked by his colleagues.

This description was intended to convey no information relevant to the question of whether Dick is an engineer or a lawyer. Consequently, the probability that Dick is an engineer should equal the proportion of engineers in the group, as if no description had been given. The subjects, however, judged the probability of Dick being an engineer to be .5 regardless of whether the stated proportion of engineers in the group was .7 or .3. Evidently, people respond differently when given no evidence and when given worthless evidence. When no specific evidence is given, prior probabilities are properly utilized; when worthless evidence is given, prior probabilities are ignored (Kahneman & Tversky, 1973, 4).

Insensitivity to sample size

To evaluate the probability of obtaining a particular result in a sample drawn from a specified population, people typically apply the representa-

6 INTRODUCTION

tiveness heuristic. That is, they assess the likelihood of a sample result, for example, that the average height in a random sample of ten men will be 6 feet (180 centimeters), by the similarity of this result to the corresponding parameter (that is, to the average height in the population of men). The similarity of a sample statistic to a population parameter does not depend on the size of the sample. Consequently, if probabilities are assessed by representativeness, then the judged probability of a sample statistic will be essentially independent of sample size. Indeed, when subjects assessed the distributions of average height for samples of various sizes, they produced identical distributions. For example, the probability of obtaining an average height greater than 6 feet was assigned the same value for samples of 1000, 100, and 10 men (Kahneman & Tversky, 1972b, 3). Moreover, subjects failed to appreciate the role of sample size even when it was emphasized in the formulation of the problem. Consider the following question:

A certain town is served by two hospitals. In the larger hospital about 45 babies are born each day, and in the smaller hospital about 15 babies are born each day. As you know, about 50 percent of all babies are boys. However, the exact percentage varies from day to day. Sometimes it may be higher than 50 percent, sometimes lower.

For a period of 1 year, each hospital recorded the days on which more than 60 percent of the babies born were boys. Which hospital do you think recorded more such days?

The larger hospital (21) The smaller hospital (21) About the same (that is, within 5 percent of each other) (53)

The values in parentheses are the number of undergraduate students who chose each answer.

 $M \rightarrow subjects$ judged the probability of obtaining more than 60 percent boys to be the same in the small and in the large hospital, presumably because these events are described by the same statistic and are therefore equally representative of the general population. In contrast, sampling theory entails that the expected number of days on which more than 60 percent of the babies are boys is much greater in the small hospital than in the large one, because a large sample is less likely to stray from 50 percent. This fundamental notion of statistics is evidently not part of people's repertoire of intuitions.

A similar insensitivity to sample size has been reported in judgments of posterior probability, that is, of the probability that a sample has been drawn from one population rather than from another. Consider the following example:

Imagine an urn filled with balls, of which $\frac{2}{3}$ are of one color and $\frac{1}{3}$ of another. One individual has drawn 5 balls from the urn, and found that 4 were red and 1 was white. Another individual has drawn 20 balls and found that 12 were red and 8 were white. Which of the two individuals should feel more confident that the urn

Cambridge University Press 978-0-521-28414-1 — Judgment under Uncertainty Edited by Daniel Kahneman , Paul Slovic , Amos Tversky Excerpt <u>More Information</u>

Judgment under uncertainty 7

contains ¾ red balls and ¼ white balls, rather than the opposite? What odds should each individual give?

In this problem, the correct posterior odds are 8 to 1 for the 4:1 sample and 16 to 1 for the 12:8 sample, assuming equal prior probabilities. However, most people feel that the first sample provides much stronger evidence for the hypothesis that the urn is predominantly red, because the proportion of red balls is larger in the first than in the second sample. Here again, intuitive judgments are dominated by the sample proportion and are essentially unaffected by the size of the sample, which plays a crucial role in the determination of the actual posterior odds (Kahneman & Tversky, 1972b). In addition, intuitive estimates of posterior odds are far less extreme than the correct values. The underestimation of the impact of evidence has been observed repeatedly in problems of this type (W. Edwards, 1968, **25**; Slovic & Lichtenstein, 1971). It has been labeled "conservatism."

Misconceptions of chance

People expect that a sequence of events generated by a random process will represent the essential characteristics of that process even when the sequence is short. In considering tosses of a coin for heads or tails, for example, people regard the sequence H-T-H-T-T-H to be more likely than the sequence H-H-H-T-T-T, which does not appear random, and also more likely than the sequence H-H-H-H-T-H, which does not represent the fairness of the coin (Kahneman & Tversky, 1972b, 3). Thus, people expect that the essential characteristics of the process will be represented, not only globally in the entire sequence, but also locally in each of its parts. A locally representative sequence, however, deviates systematically from chance expectation: it contains too many alternations and too few runs. Another consequence of the belief in local representativeness is the well-known gambler's fallacy. After observing a long run of red on the roulette wheel, for example, most people erroneously believe that black is now due, presumably because the occurence of black will result in a more representative sequence than the occurrence of an additional red. Chance is commonly viewed as a self-correcting process in which a deviation in one direction induces a deviation in the opposite direction to restore the equilibrium. In fact, deviations are not "corrected" as a chance process unfolds, they are merely diluted.

Misconceptions of chance are not limited to naive subjects. A study of the statistical intuitions of experienced research psychologists (Tversky & Kahneman, 1971, 2) revealed a lingering belief in what may be called the "law of small numbers," according to which even small samples are highly representative of the populations from which they are drawn. The responses of these investigators reflected the expectation that a valid

8 INTRODUCTION

hypothesis about a population will be represented by a statistically significant result in a sample – with little regard for its size. As a consequence, the researchers put too much faith in the results of small samples and grossly overestimated the replicability of such results. In the actual conduct of research, this bias leads to the selection of samples of inadequate size and to overinterpretation of findings.

Insensitivity to predictability

People are sometimes called upon to make such numerical predictions as the future value of a stock, the demand for a commodity, or the outcome of a football game. Such predictions are often made by representativeness. For example, suppose one is given a description of a company and is asked to predict its future profit. If the description of the company is very favorable, a very high profit will appear most representative of that description; if the description is mediocre, a mediocre performance will appear most representative. The degree to which the description is favorable is unaffected by the reliability of that description or by the degree to which it permits accurate prediction. Hence, if people predict solely in terms of the favorableness of the description, their predictions will be insensitive to the reliability of the evidence and to the expected accuracy of the prediction.

This mode of judgment violates the normative statistical theory in which the extremeness and the range of predictions are controlled by considerations of predictability. When predictability is nil, the same prediction should be made in all cases. For example, if the descriptions of companies provide no information relevant to profit, then the same value (such as average profit) should be predicted for all companies. If predictability is perfect, of course, the values predicted will match the actual values and the range of predictions will equal the range of outcomes. In general, the higher the predictability, the wider the range of predicted values.

Several studies of numerical prediction have demonstrated that intuitive predictions violate this rule, and that subjects show little or no regard for considerations of predictability (Kahneman & Tversky, 1973, 4). In one of these studies, subjects were presented with several paragraphs, each describing the performance of a student teacher during a particular practice lesson. Some subjects were asked to *evaluate* the quality of the lesson described in the paragraph in percentile scores, relative to a specified population. Other subjects were asked to *predict*, also in percentile scores, the standing of each student teacher 5 years after the practice lesson. The judgments made under the two conditions were identical. That is, the prediction of a remote criterion (success of a teacher after 5 years) was identical to the evaluation of the information on which the prediction was based (the quality of the practice lesson). The students who made

Cambridge University Press 978-0-521-28414-1 — Judgment under Uncertainty Edited by Daniel Kahneman , Paul Slovic , Amos Tversky Excerpt <u>More Information</u>

Judgment under uncertainty 9

these predictions were undoubtedly aware of the limited predictability of teaching competence on the basis of a single trial lesson 5 years earlier; nevertheless, their predictions were as extreme as their evaluations.

The illusion of validity

As we have seen, people often predict by selecting the outcome (for example, an occupation) that is most representative of the input (for example, the description of a person). The confidence they have in their prediction depends primarily on the degree of representativeness (that is, on the quality of the match between the selected outcome and the input) with little or no regard for the factors that limit predictive accuracy. Thus, people express great confidence in the prediction that a person is a librarian when given a description of his personality which matches the stereotype of librarians, even if the description is scanty, unreliable, or outdated. The unwarranted confidence which is produced by a good fit between the predicted outcome and the input information may be called the illusion of validity. This illusion persists even when the judge is aware of the factors that limit the accuracy of his predictions. It is a common observation that psychologists who conduct selection interviews often experience considerable confidence in their predictions, even when they know of the vast literature that shows selection interviews to be highly fallible. The continued reliance on the clinical interview for selection, despite repeated demonstrations of its inadequacy, amply attests to the strength of this effect.

The internal consistency of a pattern of inputs is a major determinant of one's confidence in predictions based on these inputs. For example, people express more confidence in predicting the final grade-point average of a student whose first-year record consists entirely of B's than in predicting the grade-point average of a student whose first-year record includes many A's and C's. Highly consistent patterns are most often observed when the input variables are highly redundant or correlated. Hence, people tend to have great confidence in predictions based on redundant input variables. However, an elementary result in the statistics of correlation asserts that, given input variables of stated validity, a prediction based on several such inputs can achieve higher accuracy when they are independent of each other than when they are redundant or correlated. Thus, redundancy among inputs decreases accuracy even as it increases confidence, and people are often confident in predictions that are quite likely to be off the mark (Kahneman & Tversky, 1973, 4).

Misconceptions of regression

Suppose a large group of children has been examined on two equivalent versions of an aptitude test. If one selects ten children from among those

10 INTRODUCTION

who did best on one of the two versions, he will usually find their performance on the second version to be somewhat disappointing. Conversely, if one selects ten children from among those who did worst on one version, they will be found, on the average, to do somewhat better on the other version. More generally, consider two variables X and Y which have the same distribution. If one selects individuals whose average X score deviates from the mean of X by k units, then the average of their Y scores will usually deviate from the mean of Y by less than k units. These observations illustrate a general phenomenon known as regression toward the mean, which was first documented by Galton more than 100 years ago.

In the normal course of life, one encounters many instances of regression toward the mean, in the comparison of the height of fathers and sons, of the intelligence of husbands and wives, or of the performance of individuals on consecutive examinations. Nevertheless, people do not develop correct intuitions about this phenomenon. First, they do not expect regression in many contexts where it is bound to occur. Second, when they recognize the occurrence of regression, they often invent spurious causal explanations for it (Kahneman & Tversky, 1973, 4). We suggest that the phenomenon of regression remains elusive because it is incompatible with the belief that the predicted outcome should be maximally' representative of the input, and, hence, that the value of the outcome variable should be as extreme as the value of the input variable.

The failure to recognize the import of regression can have pernicious consequences, as illustrated by the following observation (Kahneman & Tversky, 1973, 4). In a discussion of flight training, experienced instructors noted that praise for an exceptionally smooth landing is typically followed by a poorer landing on the next try, while harsh criticism after a rough landing is usually followed by an improvement on the next try. The instructors concluded that verbal rewards are detrimental to learning, while verbal punishments are beneficial, contrary to accepted psychological doctrine. This conclusion is unwarranted because of the presence of regression toward the mean. As in other cases of repeated examination, an improvement will usually follow a poor performance and a deterioration will usually follow an outstanding performance, even if the instructor does not respond to the trainee's achievement on the first attempt. Because the instructors had praised their trainees after good landings and admonished them after poor ones, they reached the erroneous and potentially harmful conclusion that punishment is more effective than reward.

Thus, the failure to understand the effect of regression leads one to overestimate the effectiveness of punishment and to underestimate the effectiveness of reward. In social interaction, as well as in training, rewards are typically administered when performance is good, and punishments are typically administered when performance is poor. By

Judgment under uncertainty 11

regression alone, therefore, behavior is most likely to improve after punishment and most likely to deteriorate after reward. Consequently, the human condition is such that, by chance alone, one is most often rewarded for punishing others and most often punished for rewarding them. People are generally not aware of this contingency. In fact, the elusive role of regression in determining the apparent consequences of reward and punishment seems to have escaped the notice of students of this area.

Availability

There are situations in which people assess the frequency of a class or the probability of an event by the ease with which instances or occurrences can be brought to mind. For example, one may assess the risk of heart attack among middle-aged people by recalling such occurrences among one's acquaintances. Similarly, one may evaluate the probability that a given business venture will fail by imagining various difficulties it could encounter. This judgmental heuristic is called availability. Availability is a useful clue for assessing frequency or probability, because instances of large classes are usually reached better and faster than instances of less frequent classes. However, availability is affected by factors other than frequency and probability. Consequently, the reliance on availability leads to predictable biases, some of which are illustrated below.

Biases due to the retrievability of instances

When the size of a class is judged by the availability of its instances, a class whose instances are easily retrieved will appear more numerous than a class of equal frequency whose instances are less retrievable. In an elementary demonstration of this effect, subjects heard a list of wellknown personalities of both sexes and were subsequently asked to judge whether the list contained more names of men than of women. Different lists were presented to different groups of subjects. In some of the lists the men were relatively more famous than the women, and in others the subjects erroneously judged that the class (sex) that had the more famous personalities was the more numerous (Tversky & Kahneman, 1973, 11).

In addition to familiarity, there are other factors, such as salience, which liffect the retrievability of instances. For example, the impact of seeing a house burning on the subjective probability of such accidents is probably greater than the impact of reading about a fire in the local paper. Furthermore, recent occurrences are likely to be relatively more available than earlier occurrences. It is a common experience that the subjective probability of traffic accidents rises temporarily when one sees a car overturned by the side of the road.