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Abstract

Existing algorithms have only limited ability to answer structural questions about
subgroups G of GL(d, F ), where F is a finite field. We discuss new and promis-
ing algorithmic approaches, both theoretical and practical, which as a first step
construct a chief series for G.

1 Introduction

Research in Computational Group Theory has concentrated on four primary areas:
permutation groups, finitely-presented groups, soluble groups, and matrix groups.
It is now possible to study the structure of permutation groups having degrees up
to about ten million; Seress [97] describes in detail the relevant algorithms. We
can compute useful descriptions for quotients of finitely-presented groups; as one
example, O’Brien & Vaughan-Lee [90] computed a power-conjugate presentation
for the largest finite 2-generator group of exponent 7, showing that it has order
720416. Practical algorithms for the study of polycyclic groups are described in [59,
Chapter 8].

We contrast the success in these areas with the paucity of algorithms to investi-
gate the structure of matrix groups. Let G = 〈X〉 ≤ GL(d, F ) where F = GF(q).
Natural questions of interest to group-theorists include: What is the order of G?
What are its composition factors? How many conjugacy classes of elements does
it have? Such questions about a subgroup of Sn, the symmetric group of degree n,
are answered both theoretically and practically using highly effective polynomial-
time algorithms. However, for linear groups these can be answered only in certain
limited contexts. As one indicator, it is difficult (using standard functions) to an-
swer such questions about GL(8, 7) using either of the major computational algebra
systems, GAP [46] and Magma [16].

A major topic of research over the past 15 years, the so-called “matrix recog-
nition” project, has sought to address these limitations by developing effective
well-understood algorithms for the study of such groups. A secondary goal is to
realise the performance of these algorithms in practice, via publicly available im-
plementations.

Thanks to Peter Brooksbank, Heiko Dietrich, Stephen Glasby, Derek Holt, Colva Roney-
Dougal and Ákos Seress for their comments and corrections to the paper. This work was partially
supported by the Marsden Fund of New Zealand via grant UOA721.
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Two approaches dominate. The black-box approach, discussed in Section 4, aims
to construct a characteristic series C of subgroups for G which can be readily refined
to provide a chief series; the associated algorithms are independent of the given
representation. The geometric approach, discussed in Section 5, aims to exploit the
natural linear action of G on its underlying vector space to construct a composition
series for G; the associated algorithms exploit the linear representation of G. Both
approaches rely on the solution of certain key tasks for simple groups which we
discuss in Section 3; we survey their solutions in Sections 6–9. Presentations for
the groups of Lie type on certain standard generators are used to ensure correctness;
these are discussed in Section 10.

As we demonstrate in Section 11, the geometric approach is realised via a com-

position tree. In practice, the composition series produced from the geometric
approach is readily modified to produce a chief series of G exhibiting C. In Section
12 we consider briefly algorithms which exploit the chief series and its associated
Trivial Fitting paradigm to answer structural questions about G. While it is not
yet possible to make definitive statements about the outcome of this project, a
realistic and achievable goal is to provide algorithms to answer many questions for
linear groups of “small” degree, say up to degree 20 defined over moderate-sized
fields.

In this paper, we aim to supplement and update the related surveys [65], [72]
and [91]. Its length precludes comprehensiveness. For example, we consider neither
nilpotent nor solvable linear groups. Nor do we discuss the algorithms of Detinko
and Flannery and others to study finitely generated matrix groups defined over
infinite fields. The excellent survey [43] addresses both omissions.

2 Basic concepts

We commence with a review of basic concepts.

2.1 Complexity

If f and g are real-valued functions defined on the positive integers, then f(n) =
O(g(n)) means |f(n)| < C|g(n)| for some positive constant C and all sufficiently
large n.

One measure of performance is that an algorithm is polynomial in the size of the

input. If G = 〈X〉 ≤ GL(d, q), then the size of the input is |X|d2 log q, since each
of the d2 entries in a matrix requires log q bits.

2.2 Black-box groups

The concept of a black-box group was introduced in [6]. In this model, group ele-
ments are represented by bit-strings of uniform length; the only group operations
permissible are multiplication, inversion, and checking for equality with the iden-
tity element. Permutation groups and matrix groups defined over finite fields are
covered by this model.
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Seress [97, p. 17] defines a black-box algorithm as one which does not use specific
features of the group representation, nor particulars of how group operations are
performed; it can only use the operations listed above. However, a common as-
sumption is that oracles are available to perform certain tasks – usually those not
known to be solvable in polynomial time.

One such is a discrete log oracle: for a given non-zero µ ∈ GF(q) and a fixed
primitive element ω of GF(q), it returns the unique integer k in the range 1 ≤ k < q
for which µ = ωk . The most efficient algorithms for this task run in sub-exponential
time (see [98, Chapter 4]).

If the elements of a black-box group G are represented by bit-strings of uniform
length n, then n is the encoding length of G and |G| ≤ 2n. If G is described by a
bounded list of generators, then the size of the input to a black-box algorithm is
O(n). If G also has Lie rank r and is defined over a field of size q, then |G| ≥ (q−1)r ,
so both r and log q are O(n).

2.3 Algorithm types and random elements

Most algorithms for linear groups are randomised: they rely on random selections.
A Monte Carlo algorithm is a randomised algorithm that, with prescribed proba-
bility less than 1/2, may return an incorrect answer to a decision question. A Las

Vegas algorithm is one that never returns an incorrect answer, but may report fail-
ure with probability less than some specified ǫ ∈ (0, 1). At the cost of n iterations,
the probability of a correct answer can be increased to 1− ǫn. We refer the reader
to [5] for a discussion of these concepts.

Monte Carlo algorithms to construct the normal closure of a subgroup and the
derived group of a black-box group are described in [97, Chapter 2].

Many algorithms use random search in a group G ≤ GL(d, q) to find elements
having prescribed property P. Examples of P are having a characteristic polyno-
mial with a factor of degree greater than d/2, or order divisible by a prescribed
prime.

A common feature is that these algorithms depend on detailed analysis of the
proportion of elements of finite simple groups satisfying P. Assume we determine
a lower bound, say 1/k, for the proportion of elements in G satisfying P. To find
an element satisfying P by random search with probability of failure less than a
given ǫ ∈ (0, 1), we choose a sample of uniformly distributed random elements in
G of size at least ⌈loge(1/ǫ)⌉k.

Following [97, p. 24], an algorithm constructs an ǫ-uniformly distributed random
element x of a finite group G if (1−ǫ)/|G| < Prob(x = g) < (1+ǫ)/|G| for all g ∈ G;
if ǫ < 1/2, then the algorithm constructs nearly uniformly distributed random ele-
ments of G. Babai [4] presents a black-box Monte Carlo algorithm to construct such
elements in polynomial time. An alternative is the product replacement algorithm

of Celler et al. [34]. That this runs in polynomial time was established by Pak [92].
Its implementations in GAP and Magma are widely used. For a discussion of both
algorithms, see [97, pp. 26–30]. Another algorithm, proposed by Cooperman [39],
was analysed by Dixon [44].
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2.4 Some basic operations

Consider the task of multiplying two d × d matrices. Its complexity is O(dω)
field operations, where ω = 3 if we employ the traditional algorithm. Strassen’s
divide-and-conquer algorithm [100] reduces ω to log2 7 but at a cost: namely, the
additional intricacy of an implementation and larger memory demands. Copper-
smith & Winograd’s result [40] that ω can be smaller than 2.376 remains of limited
practical significance.

We can compute large powers m of a matrix g in at most 2 ⌊log2 m⌋ multiplica-
tions by the standard doubling algorithm: gm = gm−1g if m is odd and gm = g(m/2)2

if m is even.

Lemma 2.1

(i) Multiplication and division operations for polynomials of degree d defined over

GF(q) can be performed deterministically in O(d log d log log d) field opera-

tions. Using a Las Vegas algorithm, such a polynomial can be factored into

its irreducible factors in O(d2 log d log log d log(qd)) field operations.

(ii) Using Las Vegas algorithms, both the characteristic and minimal polynomial

of g ∈ GL(d, q) can be computed in O(d3 log d) field operations.

For the cost of polynomial operations, see [101, §8.3, §9.1, Theorem 14.14]. Char-
acteristic and minimal polynomials can be computed in the claimed time using the
Las Vegas algorithms of [2, 69] and [47] respectively. Neunhöffer & Praeger [87]
describe Monte Carlo and deterministic algorithms to construct the minimal poly-
nomial; these have complexity O(d3) and O(d4) respectively and are implemented
in GAP.

2.5 The pseudo-order of a matrix

To determine the order of g ∈ GL(d, q) currently requires factorisation of numbers
of the form qi − 1, a problem generally believed not to be solvable in polynomial
time. Since GL(d, q) has elements of order qd − 1 (namely, Singer cycles), it is not
practical to compute powers of g until we obtain the identity.

Celler & Leedham-Green [35] present the following algorithm to compute the
order of g ∈ GL(d, q).

• Compute a “good” multiplicative upper bound B for |g|.

• Factorise B =
∏m

i=1 pαi
i where the primes pi are distinct.

• If m = 1, then calculate gpj
1 for j = 1, 2, . . . , α1 − 1 until the identity is

constructed.

• If m > 1 then express B = uv, where u, v are coprime and have approximately
the same number of distinct prime factors. Now gu has order k dividing v and
gk has order ℓ say dividing u, and the order of g is kℓ. Hence the algorithm
proceeds by recursion on m.

They prove the following:
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Theorem 2.2 If we know a factorisation of B, then the cost of the algorithm is

O(d4 log q log log qd) field operations.

We can readily compute in polynomial time a “good” multiplicative upper bound
for |g|. Let the factorisation over GF(q) of the minimal polynomial f(x) of g into
powers of distinct irreducible monic polynomials be given by f(x) =

∏t
i=1 fi(x)ni ,

where deg(fi) = ei. Then |g| divides B := lcm(qe1 − 1, . . . , qet − 1) × pβ , where
β = ⌈logp max ni⌉ and GF(q) has characteristic p.

The GAP and Magma implementations of the order algorithm are very efficient,
and use databases of factorisations of numbers of the form qi − 1, prepared as part
of the Cunningham Project [20].

From B, we can learn in polynomial time the exact power of 2 (or of any specified
prime) which divides |g|. By repeated division by 2, we write B = 2mb where b
is odd. Now we compute h = gb, and determine (by powering) its order, which
divides 2m . In particular, we can deduce if g has even order.

For most applications, it suffices to know the pseudo-order of g ∈ GL(d, q), a
refined version of B. Leedham-Green & O’Brien [73, Section 2] define this for-
mally and show that it can be computed in O(d3 log d + d2 log d log log d log q) field
operations.

2.6 Straight-line programs

One may intuitively think of a straight-line program (SLP) for g ∈ G = 〈X〉 as
an efficiently stored word in X that evaluates to g; for a formal definition and
discussion of their significance, see [97, p. 10]. While the length of a word in a
given generating set constructed in n multiplications and inversions can increase
exponentially with n, the length of the corresponding SLP is linear in n. Babai &
Szemerédi [6] prove that every element of a finite group G has an SLP of length
O(log2 |G|) in every generating set. Both Magma and GAP use SLPs.

3 The major tasks

We identify three major problems for a (quasi)simple group G = 〈X〉. (Recall that
G is quasisimple if G is perfect and G/Z(G) is simple.)

(i) The naming problem: determine the name of G.

(ii) The constructive recognition problem: construct an isomorphism (possibly
modulo scalars) between G and a “standard copy” of G.

(iii) The constructive membership problem: if x ∈ G, then write x as an SLP in
X.

An algorithm to solve (i) may simply establish that G contains a named group
as its unique non-abelian composition factor. Such information is useful: if we
learn that G is a member of a particular family of finite simple groups, then we
can apply algorithms to G which are specific to this family.

For each finite (quasi)simple group, we designate one explicit representation as its
standard copy and designate a particular generating set as its standard generators.
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For example, the standard copy of An is on n points; its standard generators are
(1, 2, 3) and either of (3, . . . , n) or (1, 2)(3, . . . , n) according to the parity of n.

To aid exposition, we focus on one common situation. Consider the classical
groups, where the standard copy is the natural representation. Let H ≤ GL(d, q)
denote the natural representation of a classical group. Given as input an arbi-
trary permutation or projective matrix representation G = 〈X〉, a constructive
recognition algorithm sets up an isomorphism between G and H/Z(H).

To enable this construction, we define standard generators S for H. Assume we
can construct the image S̄ of these standard generators in G as SLPs in X. We may
now define the isomorphism φ : H/Z(H) → G. If we can solve the constructive
membership problem in H, then the image in G of an arbitrary element of H can
be constructed: if h has a known SLP in S then φ(h) is the SLP evaluated in S̄.
Similarly if we can solve the constructive membership problem in G, then we can
define τ : G → H/Z(H). We say that these isomorphisms are constructive.

4 The black-box approach

The black-box group approach, initiated and pioneered by Babai and Beals (see
[7] for an excellent account), focuses on the abstract structure of a finite group
G. Recall, for example from [59, pp. 31–32], that G has a characteristic series of
subgroups:

1 ≤ O∞(G) ≤ S∗(G) ≤ P (G) ≤ G

where
• O∞(G) is the largest soluble normal subgroup of G, the soluble radical;

• S∗(G)/O∞(G) is the socle of G/O∞(G) and equals T1 × · · · ×Tk , where each
Ti is non-abelian simple;

• φ : G → Sym(k) is the representation of G induced by conjugation on
{T1, . . . , Tk}, and P (G) = kerφ;

• P (G)/S∗(G) ≤ Out(T1)×· · ·×Out(Tk) and so is soluble (by the proof of the
Schreier conjecture);

• G/P (G) ≤ Sym(k) where k ≤ log |G|/ log 60.
In summary, the black-box approach aims to construct this characteristic series

C for G ≤ GL(d, q) using black-box algorithms. In 2009, as a culmination of 25
years of work, Babai, Beals & Seress [10] proved that, subject to the existence
of a discrete log oracle and the ability to factorise integers of the form qi − 1 for
1 ≤ i ≤ d, there exist black-box polynomial-time Las Vegas algorithms to construct
C for a large class of matrix groups. Building on results of [9], [56], [81] and [93],
they solve the major tasks identified in Section 3 (and others) for groups in this
class. We refer the reader to [7] and [10] for details.

In Section 12 we consider how the black-box approach underpins various practical
algorithms for matrix groups.
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5 Geometry following Aschbacher

By contrast, the geometric approach investigates whether a linear group satisfies
natural and inherent geometric properties in its action on the underlying space. A
classification of the maximal subgroups of classical groups by Aschbacher [3] under-
pins this approach. Let Z denote the subgroup of scalar matrices of G ≤ GL(d, q).
Then G is almost simple modulo scalars if there is a non-abelian simple group T
such that T ≤ G/Z ≤ Aut(T ), the automorphism group of T . We paraphrase
Aschbacher’s theorem as follows.

Theorem 5.1 Let V be the vector space of row vectors on which GL(d, q) acts,

and let Z be the subgroup of scalar matrices of G. If G is a subgroup of GL(d, q),
then one of the following is true:

C1. G acts reducibly.

C2. G acts imprimitively: G preserves a decomposition of V as a direct sum

V1 ⊕ V2 ⊕ · · · ⊕ Vr of r > 1 subspaces of dimension s, which are permuted

transitively by G, and so G ≤ GL(s, q) ≀ Sym(r).

C3. G acts on V as a group of semilinear automorphisms of a (d/e)-dimensional

space over the extension field GF(qe) for some e > 1, and so G embeds in

ΓL(d/e, qe). (This includes the class of “absolutely reducible” linear groups,

where G embeds in GL(d/e, qe).)

C4. G preserves a decomposition of V as a tensor product U ⊗ W of spaces of

dimensions d1, d2 > 1 over GF(q). Then G is a subgroup of the central

product of GL(d1, q) and GL(d2, q).

C5. G is definable modulo scalars over a subfield: for some proper subfield GF(q′)
of GF(q), Gg ≤ GL(d, q′).Z, for some g ∈ GL(d, q).

C6. For some prime r, d = rn, and G is contained in the normaliser of an

extraspecial group of order r2n+1, or of a group of order 22n+2 and symplectic-

type (namely, the central product of an extraspecial group of order 22n+1 with

a cyclic group of order 4, amalgamating central involutions).

C7. G is tensor-induced: G preserves a decomposition of V as V1 ⊗V2 ⊗· · ·⊗Vm,

where each Vi has dimension r > 1, d = rm, and the set of Vis is permuted

transitively by G, and so G/Z ≤ PGL(r, q) ≀ Sym(m).

C8. G normalises a classical group in its natural representation.

C9. G is almost simple modulo scalars.

We summarise the outcome: a linear group preserves some natural linear structure
in its action on the underlying space and has a normal subgroup related to this
structure, or it is almost simple modulo scalars.

In broad outline, it suggests that a first step in investigating a linear group is
to determine (at least one of) its categories in the Aschbacher classification. If a
category is recognised, then we can investigate the group structure more completely
using algorithms designed for this category. Usually, we have reduced the size and
nature of the problem. For example, if G ≤ GL(d, q) acts imprimitively, then we
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obtain a permutation representation of degree dividing d for G; if G preserves a
tensor product, we obtain two linear groups of smaller degree. If a proper normal
subgroup N exists, we investigate N and G/N recursively, ultimately obtaining a
composition series for G.

The base cases for the geometric approach are groups in C8 and C9: classical
groups in their natural representation, and other groups which are almost simple
modulo scalars. Liebeck [74] proved that “most” maximal subgroups of GL(d, q)
have order at most q3d, small by contrast with |GL(d, q)|; the exceptions are known.
Further, the absolutely irreducible representations of degree at most 250 of all
quasisimple finite groups are now explicitly known: see Hiss & Malle [55] and
Lübeck [78].

Landazuri & Seitz [71] and Seitz & Zalesskii [96] provide lower bounds for degrees
of non-linear irreducible projective representations of finite Chevalley groups. They
show that a faithful projective representation in cross characteristic has degree that
is polynomial in the defining characteristic. Hence our principal focus is on matrix
representations in defining characteristic.

5.1 Deciding membership of an Aschbacher category

In [91] we reported in detail on the algorithms developed to decide if G = 〈X〉 ≤
GL(d, q), acting on the underlying vector space V , lies in one of the first seven
Aschbacher categories. Consequently we only update that report. In Section 6.1
we report on a Monte Carlo algorithm which decides if G is in C8.

5.1.1 Reducible groups

The MeatAxe algorithm of Holt & Rees [57] is Las Vegas and has complexity
O(d3(d log d+log q)). A key component is a search in the GF(q)-algebra generated
by X for an element whose characteristic polynomial has an irreducible factor of
multiplicity one. The analysis of [57], completed in [64], shows that the proportion
of such elements is at least 0.08.

A matrix A over GF(q) for which the underlying vector space, considered as a
GF(q)[A]-module, has at least one cyclic primary component is f-cyclic. Glasby &
Praeger [49] present and analyse a test for the irreducibility of G using the set of
f -cyclic matrices in G, which contains as a proper subset those considered in [57].

5.1.2 C3 and C5

Holt et al. [58] present the Smash algorithm: effectively an algorithmic realisation
of Clifford’s theorem [36] about decompositions of V preserved by a non-scalar
normal subgroup of G.

If G acts absolutely irreducibly, then we apply Smash to a normal generating
set for its derived group G′ to decide if G acts semilinearly. The polynomial-time
algorithm of [48] to decide membership in C5 requires that G′ acts absolutely
irreducibly on V . Implementations of both are available in Magma.
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Carlson, Neunhöffer & Roney-Dougal [33] present a polynomial-time Las Vegas
algorithm to find a non-trivial “reduction” of an irreducible group G that either
lies in C3 or C5, or whose derived group does not act absolutely irreducibly on
V . In particular, they deduce that G is in one of C2, C3, C4, or C5; or obtain a
homomorphism from G to GF(q)×. An implementation is available in GAP.

5.1.3 Normalisers of p-groups

If G is in C6, then it normalises a group R of order either r2n+1 (extraspecial) or
22n+2 (symplectic-type).

Brooksbank, Niemeyer & Seress [25] present an algorithm to produce a non-
trivial homomorphism from G to either GL(2m, r) or Sym(rm) where 1 � m � n.
They prove that this algorithm runs in polynomial time when G is either the full
normaliser in GL(d, q) of R, or d = r2. The special case where d = r was solved by
Niemeyer [89]. Implementations are available in GAP and Magma.

5.1.4 Towards polynomial time?

A major theoretical challenge is the following: decide membership of a given group
G ≤ GL(d, q) in a specific Aschbacher category in polynomial time. This we can
always do for C1 and C8, and sometimes for C3, C5 and C6.

Recently Neunhöffer [86] has further developed and analysed variations of the
Smash algorithm, and has also reformulated the Aschbacher categories to facilitate
easier membership problems. This work and the “reduction algorithms” of [25] and
[33] suggest that, subject to the availability of discrete log and integer factorisation
oracles, it may be possible using matrix group algorithms to construct in polynomial
time the composition factors of G. We contrast this with the results obtained in
the black-box context [10].

6 Naming algorithms

Let b and e be positive integers with b > 1. A prime r dividing be −1 is a primitive

prime divisor of be − 1 if r|(be − 1) but r � |(bi − 1) for 1 ≤ i < e. Zsigmondy [107]
proved that be − 1 has a primitive prime divisor unless (b, e) = (2, 6), or e = 2 and
b + 1 is a power of 2. Recall that

|GL(d, q)| = q(
d
2)

d∏

i=1

(qi − 1).

Hence primitive prime divisors of qe − 1 for various e ≤ d divide both the orders
of GL(d, q) and of the other classical groups. We say that g ∈ GL(d, q) is a ppd-

element if its order is divisible by some primitive prime divisor of qe − 1 for some
e ∈ {1, . . . , d}.
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6.1 Classical groups in natural representation

Much of the recent activity on algorithms for linear groups was stimulated by
Neumann & Praeger [84], who presented a Monte Carlo algorithm to decide whether
or not a subgroup of GL(d, q) contains SL(d, q).

Niemeyer & Praeger [88] answer the equivalent question for an arbitrary classical
group. This they do by refining a classification by Guralnick et al. [51] of the
subgroups of GL(d, q) which contain ppd-elements for e > d/2. The resulting
Monte Carlo algorithms have complexity O(log log d(ξ + dω(log q)2)), where ξ is
the cost of selecting a random element and dω is the cost of matrix multiplication.
For an excellent account, see [94]. Their implementation is available in Magma.

6.2 Black-box groups of Lie type

Babai et al. [8] present a black-box algorithm to name a group G of Lie type
in known defining characteristic p. The algorithm selects a sample L of random
elements in G, and determines the three largest integers v1 > v2 > v3 such that at
least one member of L has order divisible by a primitive prime divisor of pv − 1
for v = v1, v2, or v3. Usually {v1, v2, v3} determines |G| and so names G. The
algorithm of Altseimer & Borovik [1] distinguishes between PΩ(2m + 1, q) and
PSp(2m, q) for odd q. The central result of [8] is the following.

Theorem 6.1 Given a black-box group G isomorphic to a simple group of Lie

type of known characteristic, the standard name of G can be computed using a

polynomial-time Monte Carlo algorithm.

An implementation developed by Malle and O’Brien is distributed with GAP

and Magma. It includes naming procedures for the other quasisimple groups: if
the non-abelian composition factor is alternating or sporadic, then we identify it
by considering the orders of random elements.

6.3 Determining the defining characteristic

Theorem 6.1 assumes that the defining characteristic of the input group of Lie type
is known.

Problem 6.2 Let G be a group of Lie type in unknown defining characteristic r.
Determine r.

Liebeck & O’Brien [76] present a Monte Carlo polynomial-time black-box algo-
rithm which proceeds recursively through centralisers of involutions of G to find
SL(2, F ), where F is a field in characteristic r. It is now easy to read off the value
of r.

Kantor & Seress [67] prove that the three largest element orders determine the
characteristic of Lie-type simple groups of odd characteristic, and use this result
to underpin an alternative algorithm.

The former is distributed in Magma, the latter in GAP.
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