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1 Independence and association in the two-dimensional table

Introduction

This book describes models of category counts where each count is the
observed frequency with which a unique combination of the levels of categorical
variables occurs in a sample. This observed frequency provides an estimate of the
probability of the variable-level combination in the population. The variable-
level combinations are jointly displayed as a contingency table. Consider, for
example, the simple two-way table formed by observing two categorical (as
opposed to continuous) variables, Table 1.2 is a typical example with rows
representing the categories of the variable residential area (4) and columns
representing the categories of the variable preferred political party (B). For
convenience, both 4 and B are treated as dichotomies, that is, each has two
levels. More-complex data sets involving polytomies and more than two variables
(and hence multiway tables) are investigated at length later; we remain with the
two-way table in this first chapter to introduce some basic notation and
concepts.

It is important at the outset to make explicit any assumptions that are
implied by a methodology and, therefore, upon which the results of any analysis
are conditional. The mere act of drawing up a contingency table represents
a conscious structuring of a multifarious reality prior to analysis in which the
variation present is subdivided according to distinct categorical variables.
Although this may enable one to obtain plausible models, it is, it seems, an
imposed world-view that may not be universally shared. Nonetheless, it is argued
that, like the visual display unit, economic time series and scattergram, each of
which is a device for data display, analogous to the contingency table, proffering
its own salient information, the table of counts is an organising framework
through which to view reality which is eminently suited to many practical
situations.

Initially, raw data usually comprise a list, as in Table 1.1, which is only
subsequently organised as a table. Of course, the advantage a contingency table
like Table 1.2 has over a list is that it is a convenient and succinct summary of
the data. It contains less information than the list from which it is derived since
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it does not tell us the order in which respondents were interviewed (assuming
the list to be sequential), but in many studies this is redundant information and
nothing is lost by ignoring it. Table 1.2 not only takes up less space than the
complete list but also allows one to make a cursory examination of how fre-
quently the various combinations of A and B occur, and to compare this set of
numbers {f;;} with other sets {e;;} that would, on average, occur if various
prespecified circumstances prevailed. In other words, the {e;;} are the expected
frequencies generated according to some model. One of the most important
models, or pre-suppositions about the mechanism generating the observed data,
is that A and B are mutually independent. This will be discussed in some detail
subsequently with respect to real data, and in later chapters we will consider
other sets of expected data, and their allied models, which correspond to more-
intricate propositions than simple independence.

It can be seen from Table 1.2 that the imaginary sample listed in Table 1.1
includes f5; rural Labour party ‘affiliates’ and that f;; is the frequency in cell

Table 1.1. Observations from which to construct a 2 x 2
contingency table

Person number Residential area (A) Political party (B)
1 44 B,
2 A, B,
3 A, B,
4 Ay B,
foo Ay B,

key: foo = total sample size.
A= urban area.
A, = rural area.
B, = Labour party.
B, = not Labour.

Table 1.2. Basic notationina 2 x 2
contingency table

B B, Total
A fu f2 f1o
As fa [ f20

Total for fo2 foo
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(i,7). Altogether there are fjo urban residents and f; rural residents, whilst fo,
are ‘affiliated’ to the Labour party and fq, are not.

Another presupposition prior to an analysis is that the variable levels
employed in any table pertain to the true categories of a categorical variable and
not some amalgamation of them. The effects of category amalgamation are
discussed in a later chapter. The fact is that in many analyses the categories
defining the table cells are only surrogates for true variable levels, and may be
the result of coalescing some more finely divided categorisation or even
a continuum. For example, residential areas may be perceived to assume
positions on a graduated scale ranging from totally rural to totally urban and it is
a considerable simplification to dichotomise this ‘continuum’, as in Table 1.2.
However, this kind of simplification need not necessarily involve an information
loss of the magnitude implied by the nominal-level representation of a continu-
ous variable. There are important recent developments in contingency table
analysis related to the logit model mentioned later (Goodman 1979a; Clogg
1982b; Duncan 1979) which take account of scores or quantitative values
assigned to the levels of categorical variables. These are outlined in more detail
in Chapter 5. Assigning a quantity to a category implies that the value is repre-
sentative of all the individuals allotted to that category, though this may some-
times be too gross a generalisation with non-experimental data involving the
uncontrolled variation of a continuous variable, It is true that in many cases the
information loss incurred may be immaterial to the understanding of the system
of interest, though, ultimately, the decision to opt for categorisation must be
based on the costs and benefits involved, as perceived by the individual analyst.

A range of different models is available for data that cannot justifiably be
reduced to tables of counts. Those models are not really separate from each
other or from the models considered here, for links exist at the theoretical level
to draw them together under the umbrella title of generalised linear models
(Nelder & Wedderburn 1972; Nelder 1974; Dickinson 1977). It is generally
acceptable to consider contingency table counts as Poisson (or, equivalently,
multinomial (Birch 1963)) distributions, as described in Chapter 4. However, in
the more general context, normal, gamma or other distributions may be appro-
priate. These comprise other types of generalised linear model, probably the
most familiar of which is the classical linear regression model with normal errors.

A common algorithm exists for fitting many variants of generalised linear
model, namely the method of iterative weighted least squares (see Chapter 5),
and this provides the unifying framework with which to integrate otherwise
disparate models. This algorithm forms the core of the interlinked GLIM and
GENSTAT programs and gives immense scope in the selection of models that
can be fitted (Baker & Nelder 1978). GENSTAT is used extensively in Chapters
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5 and 6 for its capacity to easily provide the maximum likelihood estimates of
the more specialised models encountered there. However, other forms of
generalised linear model within the capacity of this package are not fitted. These
comprise a vast field with an extensive literature which lies beyond the scope of
this book.

While information loss may be a justifiable reason to reject the contingency
table approach and opt for other types of generalised linear model, it is no
longer true, as it was in the past, that contingency table analysis is an under-
developed science from which only naive conclusions can be drawn, in contrast
to the sophisticated multivariate analysis of continuous data. As a result of the
considerable advances in the techniques of categorical data analysis, allied to the
developing methodology outlined above (see Fienberg 1980), equally sophisti-
cated analyses of either categorical or continuous variables, or both iogether,
are now possible. The analyst of relations between categorical variables can now
isolate the interactions between variables after allowing for other variables in the
same way that the exponent of multiple regression can estimate partial regres-
sion coefficients, This is in stark contrast to the era when social, environmental
and behavioural scientists were of necessity confined to the analysis of two-way
tables, a restriction inviting fallacious inferences in the presence of multi-
variable associations,

Given that tables of counts are the focus of interest, there are a number of
different approaches that could be adopted. This book does not attempt to
cover all methods but a selection is made of what are judged to be of most
practical value to the data analyst. Thus the emphasis is very much on the log-
linear model, with some consideration also being given to the logit model. These
interrelated approaches are by far the most versatile, comprehensive, and
commonly used modelling procedures, though they in no way exhaust the
available options. Hildebrand et al, (1977) and Bishop et al. (1975) describe
some alternatives, and Fienberg (1980) traces various strands in the literature,
Although estimation throughout is by maximum likelihood, alternatives exist
which are described briefly in Chapter 5.

Independence in 2 x 2 tables

To establish more fully what is meant by this important proposition of
independence, let us restrict ourselves initially to the simplest possible situation
of two dichotomous variables such as those mentioned above. As will be seen,
the discussion extends naturally to the I x J table.

It is illuminating to consider the quantity p;;, the probability that an

individual chosen at random from a population belongs to cell (i, f), even though
in reality we would be presented with a set of numbers {fj;} and the set {p;}
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could never be known exactly, given sample data, Nevertheless, the definition
of independence is with respect to the {pi/} of Table 1.3 where strict equalities
apply and where there is no need to consider the perturbing effects of random
sampling variation.

Independence can be defined as the particular circumstance where knowing
a person’s 4 category is not going to help us guess his or her B category.
Consequently,

pn/pol =p1fPn= Plo/Poo =Pio

and
Puu=Polio
Likewise,
Pu/Pro=Pa/P=Pan
and

P11~ PioPor

If 4 and B are independent, then, generally, p;; = psop¢;; i,/ = 1, 2. Further-
more, since p;, /P12 = the odds on a B, response given that individuals are 4,
and p,; /P2, = the odds on a B, response given that individuals are A4 ,, the
independence condition requires that py; /P12 = P21 /P 2.

In other words, independence means that the category proportions for B are
unaltered by which A category is considered, Two equivalent ratios take a value
of exactly 1.0 when there is independence. These are the odds ratio (p11/p12)/
(P21/P22) = 1.0, and the cross-product ratio, p 1P 2 /P210 12 = 1.0 (Mosteller
1968).

Table 1.3. Theoretical probabilities
ina2 x 2 table

B] B2 Total
Ay Pnu P12 Dio
A, P21 P2z P20
Total Po P2 Poo
Y pij = Poj
i
Zpij =Dio

i
Y. P =Poo=10
ij
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It has already been stated that the { pij} are theoretical probabilities and are
unknown, though they can be estimated from sample data since Pij = fij/foo,
where py; signifies the maximum likelihood estimate of pi.

If A and B are independent, then we know that Pij = Pibj; since Pio = fio/foo
and po; = foj/foos by= fiofoj/fgo and hence e;; = fooBy; = fiofoj/foo-

Given a total of foo observations in the table, the expected frequency in the
(1, 7) cell is ey, given independence. A comparison of the set of expected
frequencies {e;;} with the set observed {fj;} provides the basis of a test of the
independence assumption. Table 1.4 contains these frequencies.

We note that the set of observed frequencies in Table 1.4 differs somewhat
from that to be expected were the variables independent, though we cannot be
sure at this point whether the difference between {f;} and {e;} should be
assigned to sampling variation or whether it represents a consistent deviation
that would be repeated in other samples. In order to choose between these
optional interpretations we utilise the familiar chi-squared test of independence.
In fact, we adopt two asymptotically equivalent formulae for our test statistic,
since the less familiar of the two allows us to discuss in simple terms one very
important issue that is relevant to all the tests performed throughout this book.

The two formulae are:

X?= ;Z (fij — eij)*/eyj
i

X2 = [log (fiufr/fr2fa)VI(f + fi2 + o + f2)
Using the first formula, X* = [(21 — 8.76)%8.76] + [(25 — 37.24)%37.24] +
[(3 —15.24)%/15.24] + [(77 — 64.76)*/64.76] = 33.3, a highly unlikely observa-
tion from the x? distribution to which X ? would approximate were noise percep-
tion and pressure-group support independent. Conventionally, we would accept

Table 1.4. Observed frequencies and corresponding expected frequencies
assuming independence

Observed Expected

B, B, Total B, B, Total
Ay 21 25 46 8.76 37.24 46
A, 3 77 80 15.24 64.76 80
Total 24 102 126 24 102 126

key: A, = respondent supports antj-Stansted airport pressure group.
A; = respondent does not support pressure group.
B, =respondent considers the local area noisy.
B, = respondent does not consider the local area noisy.
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any value of X? >xi 0.0s = 3.84 as being sufficiently unlikely, thus suggesting
that the variables are related, though of course such high values could occasion-
ally occur by chance (with probability & = 0.05) since ‘freak’ samples can occur
spuriously suggesting association when none in fact exists in the population as

a whole. Such a mistaken inference is referred to as a type I error. We could
reduce this probability « (the probability of a type I error or level of risk) to,
say, 0.01, in which case the critical value would then be x} ¢.0; = 6.64, though
this would be at the cost of increasing the probability of a type II error, which
occurs when the sample deceptively suggests independence.

The alternative and less familiar formula for X * will usually produce similar
values to those generated by the above formula in large samples since both
statistics are distributed asymptotically as x*. We now find that

X% = {log [(21 x 77)/(25 x 3)]}Y
[(121) + (1/25) + (1/3) + (1/77)] = 9.43/0.43 = 21.73,
which, although somewhat less than 33.3, also has a very small probability of
occurring in the x? distribution.

Note that the numerator of this equation is a function of the cross-product
ratio (f11/22/f12f21) defined above with probabilities, where we established that
it will assume a value 1.0 with independent variables. Thus log (f11f22/f12/>1) has
a mean of 0, assuming independence, and since it has an approximately normal
distribution it will lie within 1.96 standard deviations of this mean in 95% of
random samples. The standard deviation is the square root of the denominator in
the above X ? equation. In fact, the relation between the normal and chi-squared
distributions is illuminated by this equation since it shows that x?is simply the
square of a normally distributed variable with mean O and variance 1.0.

The denominator is a function of the observed cell frequencies and it will
increase in value as they diminish. What this in effect means is that, given two
samples of different size, ostensibly displaying the same degree of association as
measured by the sample cross-product ratio fy; f22/f12f21, one could very easily
conclude that there is evidence of association in the population on the basis of
the larger sample and its resulting X 2 value, whereas perhaps X ? would not be
deemed an unusual observation from a x? distribution in the smaller sample due
to the inflation of the denominator, which consequently deflates X 2.

This is illustrated in a concrete way by Table 1.5 which describes a smaller
sample drawn from the same Stansted population as the data in Table 1.4.

Both tables display an equivalent degree of association between pressure-group
support and noise perception, on the basis of direct comparison of respective
cross-product ratios, but Table 1.5 provides less-convincing (though still highly
significant) statistical evidence of non-independence.
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From Table 1.5 we find that X% = {log [(5 x 20)/(2 x 2)1}¥/
[(A/5)+ (1/2) +(1/2) + (1/20)] = 10.36/1.25 = 8.29 and that
P(x}> 8.29) = 0.004, as opposed to P(x?>21.73) = 0.000 003, for the
larger sample in Table 1.4. The small observed frequencies of Table 1.5 raise
questions about the validity of the assumption that X ? approximates to x?,
given independence, since they produce one distinctly small expected value,
The question of the validity of the X% approximation to x? for the 2 x 2 table
has been considered by a number of authors, commencing with Yates (1934)
who introduced a continuity correction giving X2 = Z; Z; (1fy — eyl — 3)*/ey;.
This is an often-used formula, though Fienberg (1980) reports that it may
increase the probability of a type II error when referred to the x3 distribution.
We refrain from using it here. Fisher’s exact test (see Upton 1978) is an
alternative approach, though difficult to generalise to the multiway table. Small
samples are discussed in the context of the multiway table in Chapter 5. The
converse problem, inference from large samples, is considered in Chapter 6.

The main point of the current discussion is the possibility that our con-
clusions about the presence or absence of association depend on the size of the
sample. Although the chosen measure, the (log) cross-product ratio, will still, on
average, take a value one (zero) in the absence of association whatever the
sample size, the normal range of its variation around this expected value will not
be stable, This is illustrated by comparing the square roots of the denominators
used to calculate X 2 for Tables 1.4 and 1.5,4/(0.43) and v/(1.25) respectively.
Thus, although the cross-product ratio is marginally larger for Table 1.5, it could
more easily have been generated by sampling from a population in which the
variables are independent.

The above illustrates that a large sample provides more evidence, or informa-
tion, on which to base conclusions about a population, and this generalisation
is true for the variety of hypotheses tested throughout this book. This is why,
formally, we can never accept a null hypothesis, which, in the present context,
is the statement that there is no association between the variables. The most we
can do is fail to reject it on the grounds of insufficient evidence of the existence

Table 1.5. 4 small sample
from the Stansted population

Bl B2
A, 5 2
Ag 2 20

key: as in Table 1.4.
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of association in the population from which the sample is drawn. One can never
prove conclusively that no association exists in the population simply because
another analyst may take a larger, more revealing, sample which provides the
evidence we failed to detect.

The above comments are made with reference to the simple two-way table
and data generated by the independence model, though they are equally applic-
able to the larger tables and more-complex models to be encountered in later
chapters. A further comment on these and related issues is to be found later in
the book after some of the details of these complexities have been made more
explicit.

The I x J table

The notation and concepts applicable to the 2 x 2 table are easily
extended to the I x J table which summarises data such as that in Table 1.6.
The essential difference between Table 1.6 and Table 1.1 is that the former
describes the variation of two polytomous variables rather than two dichotomies.
The essence of this variation would be discernible from a two-way contingency
table such as Table 1.7.

If A and B were independent, we would find that f;;/f;0 = foj/foo, Where fj; is
the observed frequency in typical cell (7, j). Although exact equalities are unlikely
because of random sampling variation, this approximate equality would hold for
all 7, . In terms of theoretical cell probabilities, independence can again be
defined as p;; = p;oPoj, i = 1,2, ..., 1;=1,2, .. VA

Table 1.6. Observations from which to construct an I x J contingency table

Person number Residential area (A4) Political affiliation (B)
1 Asj Bg
2 A, B,
3 Aq B,
f(x) A 2 B4
key: A, = inner city. B, = Labour party.
A, = suburbs. B, = Liberal party.
As = rural. B = Social Democrats.

B, = Conservative party.
B, = other parties.
B¢ = unaffiliated.
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Table 1.8 is an / x J contingency involving two polytomous variables, car
availability and fatigue, compiled from data originally analysed by Bowlby &
Silk (1982). We find that X2 = X; Zi(fij —eij)’le; = 23.42> x'g’, 0.0s = 15.51,
indicating significant association between car availability and fatigue. This is a
rather general statement in which no attempt is made to identify the source of
the interaction between the two variables. These data are discussed from
another viewpoint in relation to the saturated log-linear model later in this
chapter, and in Chapter 5 we attempt to make more-precise statements about
the way in which pairs of polytomous variables interact. Note that the enlarged
critical value xg, 0.05 reflects the fact that the independence model is here fitted

Table 1.7. Basic notation in an I x J contingency table

Bl Bz B3 B4 Bs PN BJ Total
A, i f12 f13 Hr  fio
A, fa [ I3 e 20 fa
Az fa fn  fa R NV A )
Ar 1 e f1r fro
Total fo, fo fo3 .- fosr  foo

Table 1.8. An I x J contingency table from a shopping survey in Oxford

B B, B, B, B; Total
Ay 55 11 16 17 100 199
Ay 101 7 18 23 103 252
Aj 91 20 25 16 77 229
Total 247 38 59 56 280 680

key: A1 = no car availability.

A, = some car availability.

A ;= full car availability.
The level assigned to respondents on the fatigue variable B is determined by the
extent of their agreement with the assertion: ‘I find getting to grocery shops
very tiring.’

B, = disagree.

B, = tend to disagree.

B, =in between.

B, = tend to agree.

B = agree.
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