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ABSTRACT

This essay concerns the unipotent representations of the finite
general linear groups GLn(q). An irreducible unipotent representation is,
by definition, a composition factor of the permutation representation of
GLn(q) on a Borel subgroup, and the ordinary irreducible unipotent
representations may be indexed by partitions A of n, as may the ordinary
irreducible representations of the symmetric group @5' The remarkable
feature is that the representation theory of G; over an arbitrary field

appears to be the case "g = 1" of the subject we study here.

The most important results are undoubtedly the Submodule Theorem
{Chapter 11) and the Kernel Intersection Theorem (Chapter 15), but there seems
to have been no previous work on the representation modules for the unipotent
representations of GLn(q), so we claim originality for all the results apart from

those whose source is quoted or which are obviously known (Chapters 3 - 8).

Chapters 1 and 2 set the scene, by outlining the connection between
e% and representations of GLn(q) over fields of characteristic dividing q,
and by giving examples of the situation to be considered 1later. The
preliminary results which we need are derived in Chapters 3 - 8. Thereafter,
we assume that the characteristic of our ground field K does not divide q,
but otherwise K is arbitrary. Certain idempotents of the group algebra are
defined in Chapter 9, and they are used in Chapter 10 to describe the

structure of the permutation module Mx of GLn(q) on a parabolic subgroup.

In Chapter 11, we define a certain submodule SA of MA in terms of a

generator; SA may be regarded as the g-analogue of a Specht module. The
Submodule Theorem states that every KGLn(q)—submodule of MX either contains
SA or is contained in S;. We proved the Submodule Theorem for Gn in 1976

(James [Jl]), and thereby gave the first construction of the irreducible

representations of G% over an arbitrary field. We have already published a
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proof of the Submodule Theorem for GLn(q) (James [J9]), but the proof given
here is new; it is simplified by assuming initially that the ground field
contains all the pth roots of unity (where q is a power of p). The Submodule
Theorem gives us an irreducible unipotent representation of GLn(q) for each

partition of n. In particular, the various modules S, are the ordinary

A
irreducible unipotent representations when the set of rational numbers is

the ground field.

The aim of the next few chapters is to construct a basis for SX' and
to prove the Kernel Intersection Theorem (Chapter 15), which describes SA
as the intersection of the kernels of certain KGLn(q)-homomorphisms defined
on MX' Here we roughly follow the approach we adopted in 1977 (James [J4])
to prove similar results for Specht modules. Unlike the situation for
symmetric groups, where bases for Specht modules and the Kernel Intersection
Theorem are easy for many special cases, the only partitions for which the
GLn(q) results are clear are (n) (when there is nothing to prove!) and
(n -1, 1). Even the partition (2, 2) of 4 is difficult to handle; in place

of a 2-dimensional representation of 62, we have to deal with a (q2 + q“)—

dimensional representation of GL4(q).

Many important results (Chapter 16) follow from the Kernel Intersection
Theorem. For example, dim SA is shown to be independent of K, and we prove
that we have found all the irreducible unipotent representations over K.

The Branching Theorem, describing the structure of S, as a KGLn_l(q)-module,

A
is also deduced.

By combining the Submodule Theorem and the Kernel Intersection Theorem,
it is possible to embark upon the task of finding the decomposition matrices
of GLn(q) for primes which do not divide q... The problem of determining the
decomposition matrices of G; is still open, and we believe that the key may

well lie with the unipotent representations of GLn(q).
In Chapter 17, we prove a theorem on the decomposition matrix of

-viii-
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GLn(q) concerning the removal of the first column from the diagram [A]; the

corresponding ¢ result was proved only recently (James [J.]).
n 8

As far as we know, only the parts of the decomposition matrix of G%
corresponding to hook partitions or to two-part partitions is known (Peel [P]
and James [J2, J3]), although work is in progress on the partitions
(n -m-1, m 1). An analogue of Peel's results is given in Chapter 16,
and in the final two chapters we determine the part of the decomposition
matrix of GLn(q) which corresponds to two-part partitions, for all primes
which do not divide g; the evidence that the modular representation theory

of G% is just the case "q = 1" is then overwhelming.

Naturally, we have pondered the question why the modular representations
of G; look like representations of the group of automorphisms of an n-dimensional
vector space over "the field of one element". It is easy to be misled into
giving an unsound argument about this, and it must be noted that our proofs
do not translate into proofs for @;. More challenging still is the explanation
of the possible result that the representation theory over F; of GLd(r)

(d 2 n, r prime) is the case "q = 1" of our work here - see the remarks at

the end of Chapter 16. Why should the representation theory of GLn(q) over
fields whose characteristic does not divide g throw light on the representation
theory of general linear groups of different dimension over fields of the

natural characteristic?

Knowledge of the theory for @% has guided us to search for proofs to
present here which would translate immediately into proofs for the symmetric
group. We have been unsuccessful, so we cannot explain why "putting q = 1"

works, and entirely new techniques have had to be developed in this essay.
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Symbol

e1r €y onn

Fa

(F_, +)
q

G
r

G*
x

G(T)

GLn (q)

tall

lp(m)

LIST OF SYMBOLS

Meaning

A certain subgroup of u
A certain idempotent of iAr
The group of upper/lower triangular matrices
A function from T to {1, 2, ..., q}
A certain function from I'(r) to {1, 2, ..., q}
An idempotent in iGn
An idempotent in KG(T(x))
An idempotent in KU~
The exponent of q modulo p
A basis for Vv
The field of g elements
The additive group of ﬁa
A subgroup of GLn(q), isomorphic to GLr(q)
A certain subgroup containing Gr
X5 | (1, jyer >
The group of automorphisms of V
The group of diagonal matrices
A certain subgroup contained in G;
The number of non-zero parts of A
A certain diagonal matrix
The hook length of the (i, j) node in [A]
The identity r X r matrix
A field of characteristic coprime to g

K extended by a primitive pth root of unity,
where q is a power of p

The least non-negative integer i such that m < pl

Chapter of
definition

8.1

9.8

20.1

19.1
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=]

B S
—

—_—
B2

o
>

ij

xij (o)

a, By Y, S

I‘l

I'(x)

The permutation module on P
1

A

1+qg+ q2 + ... + qm_
[11 (2] ... [m]
The dimension of V

A Gaussian polynomial

A binomial coefficient

A parabolic subgroup

A prime number

The field of rational numbers
A power of a prime number

A subset of {1, 2, ..., h}

The set of subsets of {1, 2, ..., h} of
cardinality r

A certain subset of 2%

A certain submodule of MA

The symmetric group on n symbols

The initial A-tableau

The group of upper/lower unitriangular matrices

+
A certain subgroup of U~

The n-dimensional vector space over F_ of which
GLn(q) is the group of automorphisms

The group of permutation matrices
A root subgroup
An element of Xij
The ring of integers
Elements of E;
A closed subset of ¢
The "commutator" subset of T
{(i, 3) | n2zi >3 <r=<n}

A EGn—homomorphism

- xXi -

10.1

2.5

10.17

2.4

2.14

10.8

10.8

10.20

11.11
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K An element of K
Ay M,V Compositions of n
vp(m) The largest integer i such that pi divides m
m, 0, T Permutations
ﬂA A certain permutation, depending on A
LN A certain permutation, depending on R
® {(i, 3) | 1 2ig3 s n}
ot {(i, 99 | 1£4i <3 sn}
% {(i, 3) | 1 €4 <4isn}
¢l, ¢2, RN Linear K-characters of Ar
Xl' x2, ces Linear K-characters of (E&, +)
Xe A linear K-character of G(T)
Xy, The ordinary character of SA
wd,i A certain EGn-homomorphism defined on MA
& A transitive relation on the set of compositions of n
> & but not =
<eoo> The group, or vector space, generated by ...
<, >k A bilinear form on MA
- xii -

19.1

11.3

12.1

5.6

9.6

9.1

11.1
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