# CONTENTS

## Preface  

1 Introduction to rate equations  

1.1 Introduction  

1.2 Continuity  

1.3 Chemical reactions  

1.4 Buying and selling houses: quantised transactions  

1.5 Rate of change of probability  

1.6 Information arrival  

Problems 1  

2 Elementary rate equations in semiconductors  

2.1 Charge carrier transport  

Introduction  

Rates of change of momentum: mobility  

Rate of loss of energy  

2.2 Relaxation rates  

Introduction  

Dielectric relaxation time  

Motion of charge carriers  

2.3 Recombination  

Introduction  

Direct recombination  

Single trap recombination  

Problems 2  

3 Rates of switching  

3.1 The simple switch: an introduction  

3.2 Types of switch  

The plasma switch  

Methods of plasma formation  

Switching rates  

The charge transport switch  

First-order modelling of charge transport switch
# Contents

3.3 The field effect transistor
   - Introduction ........................................... 44
   - Operation and construction ......................... 45
   - Dynamics .................................................. 46
   - Consequences of the dynamical model ............... 48
   - Circuit effects on switching speeds ................. 49

3.4 Notes on charge storage models
   - Introduction ........................................... 50
   - p-n junctions ............................................ 50
   - The bipolar transistor ................................ 53
   - Problems 3 ............................................... 56

4 Rates of change and transfer in phase space
   - The Boltzmann equation
     - Introduction ........................................... 60
     - The distribution function ......................... 62
     - Rates of change of the distribution function ... 63
     - Collisions .............................................. 64
     - Equilibrium distribution ............................ 65
     - The continuity equation ............................. 66
     - Momentum conservation .............................. 67
     - More about collisions ................................ 68
     - Equilibrium in a potential ......................... 70
   - Energy transport and the transferred electron
     - Classical energy transport ......................... 70
     - Two valley conduction - Gunn effect ............... 73
     - Number conservation ................................ 74
     - Momentum and energy balance ...................... 75
     - Velocity/field characteristics ...................... 76
   - Problems 4 ............................................... 80

5 Rate equations in quantum electronics
   - Statistics and rate equations
     - Introduction ........................................... 83
     - Classical interactions .............................. 84
   - Fermion-Fermion interactions ......................... 88
   - Photon-electron interactions ........................ 90
   - More about bosons .................................... 96
   - Time fluctuations of photons in the electromagnetic field
     - Problems 5 ............................................... 98

6 Rate equations in optoelectronic devices
   - Models for optoelectronic devices
     - Introduction ........................................... 104
     - The light emitting diode ............................ 104
     - Semiconductor diode lasers ....................... 105
     - The photodiode ....................................... 107
## Contents

6.2 Photon and electron rate equations 108  
   Introduction 108  
   Validity of model 109  
   Stimulated emission rates 110  
   Spontaneous emission rates and coupling 112  
   Photon lifetime 113  
   Net photon rate equations 115  
   Travelling wave rate equations 115  
   Electron rate equations – the drive 115  
   Travelling wave electron drive 116

6.3 Rate equations for the photodiode 117  
   Optical absorption 117  
   A ‘lumped’ model for the photodiode 117  
   The avalanche photodiode (APD) 119

6.4 Injection laser dynamics 120  
   Threshold conditions 120  
   Small signal deviations 121  
   Large signal gain switching 123

6.5 Rate equations for the light emitting diode 124  
   Steady state conditions 124  
   Dynamic performance 126  
   Problems 5 126

7 Advanced topics in rate equations 128

7.1 Introduction 128

7.2 Photon statistics for injection lasers 129  
   Recasting the laser equations 129  
   Rates of change of probability 130  
   Equilibrium photon distributions 132  
   Practical consequences 133

7.3 Multimode rate equations for injection lasers 133  
   Laser modes 133  
   Multimode: steady state conditions 134  
   Multimode dynamics 137

7.4 Rate equations with phase included 139  
   Introduction to mode locking in lasers 139  
   Amplitude rate emission with coupled cavity 141  
   Solution to amplitude rate equation 143  
   Mode locking 145  
   Discussion 146  
   Spontaneous emission 147

7.5 Photon rate equations from Maxwell’s equations 148  
   Maxwell’s equations with electrically active media 148  
   The energy rate equation 150  
   Equality of electric and magnetic energy 152
## Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slater’s perturbation theorem</td>
<td>152</td>
</tr>
<tr>
<td>Amplitude rate equations</td>
<td>155</td>
</tr>
<tr>
<td>Problems 7</td>
<td>156</td>
</tr>
<tr>
<td>Appendix A</td>
<td></td>
</tr>
<tr>
<td>Concept of a state: photons</td>
<td>159</td>
</tr>
<tr>
<td>Electron states in a crystal</td>
<td>160</td>
</tr>
<tr>
<td>Density of states</td>
<td>161</td>
</tr>
<tr>
<td>Classical states</td>
<td>161</td>
</tr>
<tr>
<td>Appendix B</td>
<td></td>
</tr>
<tr>
<td>Notes on differences between gas and diode</td>
<td>163</td>
</tr>
<tr>
<td>laser rate equations</td>
<td></td>
</tr>
<tr>
<td>Notes on solutions</td>
<td>166</td>
</tr>
<tr>
<td>References</td>
<td>170</td>
</tr>
<tr>
<td>Index</td>
<td>174</td>
</tr>
</tbody>
</table>