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Introduction

The stellation process was described in some
detail in Polyhedron models; so 1 shall simply
refer you to that source for more detailed in-
formation. But I must say at once that a thor-
ough acquaintance with this process is really
a necessity if you want to acquire a deeper
appreciation of its usefulness in relation to po-
Iyhedral duality. This will become very evi-
dent as you work your way through the models
presented here.

Basic notions about stellation
and duality

Very little has been published about stellations
of Archimedean solids. My own work has led
me to see that there is no reason to limit oneself
to strictly Archimedean forms. In fact, some
variations lead to far more aesthetically pleas-
ing results, and such variations become nec-
essary, unavoidably so, in the process of
working out some of the dual forms of non-
convex uniform polyhedra. Interesting as the
stellation process may be in its own way, it
will not be the primary concern here.

As for duality, it seems strange in some
ways that historically its geometrical signifi-
cance was not clearly recognized until modern
times. The five regular solids were known in
ancient times, as was the entire set of thirteen
semiregular solids. Johannes Kepler, in 1611,
seems to have been the first to have recognized
that the rhombic dodecahedron is the dual of
the cuboctahedron. Other duals seem not to
have entered into historical perspective until
the work of E. Catalan, a French mathema-
tician, who published his results in 1862. At
the beginning of the twentieth century, M.
Briickner summarized all the results of poly-

hedral research known at that time. In his clas-
sic work Vielecke und Vielfldche he gives an
exact definition of duality, or what more strictly
must be called the polar reciprocal relation-
ship, and he exhibited many dual forms as
models in his photographic plates.

What precisely is involved here? By way of
a general description it may be said that the
dual of any polyhedron is one that has the same
number of edges as the original from which it
is derived, but there is an interchange in the
numbers of faces and vertices. The kinds of
faces and vertices are such, however, that an
n-sided polygon as face in the original yields
an n-edged vertex in the dual. However, this
is at best a rather vague definition or descrip-
tion of the duality relationship. Another way
for you to picture the process by which the
dual is generated is to fix your attention on the
point called the incenter of a polyhedral face
and then think of this point moving out from
its position on the surface of the original po-
lyhedron. The movement of this point (math-
ematically speaking, its translation) must take
place along an axis of central symmetry of the
solid. Such a translation will eventually bring
the point to a position that coincides with a
vertex point of the dual of the original poly-
hedron. But how far must this point move?
The answer is given in the polar reciprocal
relationship, which will be considered next.

Polar reciprocation

It will be useful first to introduce the notion
of polar reciprocation in two-dimensional
space, namely in plane geometry. In higher
geometries, such as projective geometry, the
notion of duality has some far-reaching con-
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sequences, but here only one aspect of it is
needed, a very simple one indeed. Its very
simplicity belies its far-reaching consequences
even here. As a theorem in plane geometry,
the basic idea of polar reciprocation can be
found in Euclid. It is also directly related to
the famous theorem of Pythagoras. Figure 1
shows a circle whose center is O, with a point
P’ inside it and P outside it, and Q is on the
circumference of the circle. P is the polar re-
ciprocal of P’ if and only if OP-OP’ = 0Q".
If a, b, and r name the measured distances of
P, P', and Q from O, then algebraically this
theorem says that ab = r*. The proof of the
theorem is derived from the similarity of the
right-angle triangles formed by joining P’ to
0. Because corresponding sides of similar tri-
angles are proportional, it follows that a : r
= r: b, namely, ab = 7.

In three-dimensional space (i.e., in solid
geometry) you need only imagine Fig. 1 as

representing a cross section through a sphere
with P’ inside and P outside the sphere, with
Q lying on its surface and O being the center
of the sphere, so that OQ becomes a radius of
the sphere. The algebraic formula ab = r* can
now be used to determine the exact distance
of P as a vertex point of a dual in relation to
the point P’ taken here to represent the incenter
of a given polyhedral face. This definition is
very important, because the dual form can take
on some very subtle transformations or vari-
ations if it is disregarded. For example, in the
Epilogue of Polyhedron models 1 referred to
the models made from Figs. 7, 8, and 9 (shown
on p. 6 of that book) as Archimedean duals,
which they really are not. In Spherical models
(p. 51) I made reference to spherical duals.
The three duals just mentioned really are plane
or flat models of spherical duals. These are
not the same as polar reciprocal duals. As an-
other example, it might be pointed out that in

OP-OP' = 0Q?
ab =r?

Fig. 1. Polar reciprocation in plane geometry.
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a very artistically illustrated book, Polyhedra,
the realm of geometric beauty, the author, U.
Graziotti, attempted to show how the Archi-
medean duals can be geometrically derived by
the process of erecting pyramids on the faces
of a chosen basic polyhedron, the vertices of
these pyramids thus determining the vertices
of the related dual. Graziotti fixed his attention
exclusively on the shape of the lateral faces
of such pyramids and in the process neglected
to consider the exact heights of such pyramids.
Actual calculation involving the polar recip-
rocal formula disqualifies seven of the thirteen
semiregular duals he intended to show.

It might be good at this time to give a fuller
exposition of the polar reciprocal relationship.
If you find the following presentation too ab-
stract on a first reading, you may want to skip
it for now and return to it later on, when the
handling of models may greatly aid you toward
a better understanding. I am indebted to H.
Martyn Cundy for the following elaboration.
He sent this to me after reading an article I
wrote in which I enunciated the following con-
jecture: ‘“The dual of any given non-convex
uniform polyhedron is a stellated form of the
dual of the convex hull of the given solid.”
The convex hull (which Coxeter calls the
‘“‘case’’) is the smallest convex solid that can
contain it. The dual of this convex hull is either

2

known or can be found by using the polar
reciprocal formula. Once it is found it serves
as the “‘core’” of the stellation process.

Here is Cundy’s summary:

1. Every uniform polyhedron has all its ver-
tices lying on a sphere.

2. The process of forming the dual is equiv-
alent to taking the polar reciprocal in this
sphere.

3. In polar reciprocation,

every point is replaced by its polar plane
every plane is replaced by its pole.

4. If the sphere has center O and radius r, the
polar plane p of the point P is the plane
normal to OP through N, where N is on
OP and OP-ON = r*. See Fig. 2.

5. If P is on the sphere, p is a tangent plane
at P. If P is outside the sphere, the tangents
from P to the sphere meet it at points on
p. If P is on g, the polar plane of O, then
Q is on p. See Fig. 3.

6. The plane p is between O and Q if and only
if the plane g is between O and P. See Fig.
4.

7. The convex hull of a uniform polyhedron
is a polyhedron whose dual is a convex
polyhedron with an inscribed sphere touch-
ing all its faces.

\

/4N

Fig. 2. Polar reciprocation in solid geometry.
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(a) (b)
OP-OL=0Q -OM=r?
(c)
Fig. 3a—c. Polar reciprocation in solid geometry.
4
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0Q-OM=r*=0P-OL=0H 0K

0Q>0H +0M<0K

Fig. 4. Polar reciprocation in solid geometry.

8. A uniform polyhedron has all its faces either
lying in the convex hull or passing between
the center and some vertex of the hull. So
the vertices of the dual either lie in the
planes of the dual of the hull or lie outside
some of its planes. Furthermore, because
the vertices of the polyhedron are vertices
of the hull, the planes of the dual are the
planes of the dual of the hull. But this means
that the dual is a stellation of the dual of
the hull. Thus, all the nonconvex uniform
polyhedral duals are stellations of the duals
of their convex hulls.

This much from Cundy.

How facial planes are embedded in
stellation patterns

With respect to the stellation process, a distinct
advantage enters here because the duals have
each a single stellation pattern because of the
fact that a dual form is isohedral (i.e., all its
faces are alike or congruent), just as the orig-
inal is isogonal (i.e., all its vertices are alike).
Thus, the face of the dual of any nonconvex
uniform polyhedron is embedded in the stel-
lation pattern of the dual of its convex hull.
The faces of nonconvex duals can be de-
rived from the vertex figures of the original
nonconvex forms. The polygons that appear
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as faces in these instances can take on some
strange shapes, but the process of finding these
shapes remains basically the same. The cal-
culations can also be done and angular meas-
ures can be derived by the use of plane
trigonometry. This will be specifically illus-
trated in the section dealing with the noncon-
vex duals later in this book.

A final word by way of introduction is in
order here. The techniques of making the
models shown in this book are the same as
those used in my two previous books, and the
materials used are simply white index cards
or stiff paper. I strongly urge you, however,
to make your own drawings wherever possible
before you set out to make any model. You
will learn a great deal about geometrical draw-
ing by doing the work yourself. You are also
invited to design your own templates, called
nets here, as well as in my other books. It will
give you some further challenge to work these
out for yourself looking at your own drawings,
using tracing paper as an aid and inspecting
the photos for the interconnections of the parts.

No reference has been made to the use of
color, but it is a fact that the use of colored
tag (i.e., index-card stock), or, even better,
metallic papers, can add greatly to the beauty
of these shapes. Colors may also be introduced
after a model has been constructed, when fa-

cial planes are easier to see. The use of color
can add greatly to the attractiveness of these
shapes, while at the same time adding to the
time-consuming labor involved. But the end
result is always worth the effort.

So now you are ready to begin your journey
through this world of polyhedral duals. If the
simpler models at the beginning of the book
do not provide you with sufficient challenge,
then you may skip them and go immediately
to the nonconvex uniform duals. I can assure
you that some of these are not too difficult,
but others may well tax your ingenuity. But
for all of them the mathematical aspects are
always interesting, as is the richness of their
interrelationships. You may also find yourself
pursuing the many beckoning side paths that
show up with each stellation pattern. Beauti-
fully symmetrical shapes can thus be discov-
ered along the way. Some of these side paths
will be pointed out for you in the related com-
mentary, without going into them, the reason
being to keep the main theme true to the book’s
title. It is also true that stellated forms are
bewilderingly numerous. A fuller treatment of
stellated models could well be the topic of a
future book, authored not necessarily by me,
perhaps, but by anyone who finds never-end-
ing pleasure in the discovery of new polyhed-
ral shapes.
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|. The five regular convex polyhedra

and their duals

The five regular solids, also called the Platonic
solids, are well known. If you have these as
models to work with now, you will find that
the notion of duality can very easily be illus-
trated with regard to them.

The tetrahedron is the simplest of all po-
lyhedra. It has only four faces, each of which
is an equilateral triangle. It has four trigonal
vertices, which means that three face angles
surround each vertex. Finally, it has six edges.
You see immediately that an interchange in
number and kind of faces and vertices leaves
the number four unchanged. Because the dual
of any polyhedron always keeps the same
number of edges as the original from which it
is derived, the number six must be kept for
the number of edges. This simple description
shows you that the tetrahedron is its own dual;
that is, the dual of a tetrahedron is another
tetrahedron.

If you look now at the octahedron, you see
that it has eight faces, each of which is an
equilateral triangle. It has six vertices, which
can be called tetragonal, because four face
angles surround each vertex. Finally, it has
twelve edges. An interchange in number and
kind of faces and vertices implies that its dual
must have eight trigonal vertices and six te-
tragonal faces, and its edges must still number
twelve. Another word for tetragonal is the word
quadrangular, a figure or polygon with four
angles. This means it also has four sides. But
the question is What shape must it have? The
answer is found by observing that the octa-
hedron has a square as its vertex figure. There-
fore the dual must have faces in the shape of
a square. If three such squares must surround
each vertex, you see that the dual of the oc-
tahedron must be the cube or hexahedron.

Now look at the cube and go through the
same steps of consideration. The cube has six
faces, each a perfect square. It has eight tri-
gonal vertices and twelve edges. Its vertex
figure is an equilateral triangle. So the dual of
the cube must have eight equilateral triangles
for faces and six tetragonal vertices, and the
number of edges remains twelve. But this is
a description of the octahedron. So you see
that the dual of the cube is the octahedron.

Two more regular polyhedra are left to com-
plete this introductory investigation of the five
regular solids. They are the icosahedron and
the dodecahedron. The icosahedron has twenty
equilateral triangles for faces. It has twelve
pentagonal vertices and thirty edges. An in-
terchange in number and kind of faces and
vertices, while retaining the number of edges,
will lead you to see that its dual is the dode-
cahedron. Because the dodecahedron has
twelve pentagonal faces and twenty trigonal
vertices, with the number of edges still re-
maining at thirty, you see that its dual is the
icosahedron.

This simple investigation shows that the five
regular solids have duals within the same set
of five. But this investigation did not take into
account the polar reciprocal relationship. This
can be applied mathematically, but the results
are not particularly enlightening. This is so
because, first of all, it is too powerful a tool
to use for such simple shapes and, secondly,
reciprocation in the midsphere rather than in
the circumsphere gives a more interesting re-
sult. Such a reciprocation implies that the re-
spective edges of any one of the regular solids
can be made to become the perpendicular bi-
sectors of the corresponding edges of its dual.
This is a particularly attractive arrangement
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for model making, one that is usually shown
in books about polyhedra. The tetrahedron with
its dual becomes a compound of two tetra-
hedra, a stellated form of the octahedron, as
shown in Polyhedron models 19. The octa-
hedron with its dual, the cube, is a stellated
form of the cuboctahedron, as shown in Po-
lyhedron models 43. Finally, the icosahedron
with its dual, the dodecahedron, is a stellated
form of the icosidodecahedron, as shown in
Polyhedron models 47.

A different technique for model making is
suggested in this book for the five regular sol-
ids. This technique can then be carried over
very satisfactorily into the models of semire-
gular solids.

Photos 1 through 5 show each of the five
regular solids embedded inside its own dual,
but this dual appears only as an edge model.
The geometrical and numerical details follow
the elaboration given in Spherical models (pp.
125-31). These models are designed so that a
vertex of the inner solid coincides with the
incenter of a face of the dual. The faces of
these duals, however, are merely suggested by
the edges that lie outside the respective edges
of the inner model. Thus, the edges are still

Photo 1. Tetrahedron (1).

perpendicular bisectors of each other, but not
through each other, called skew lines; that is,
the midpoint of one edge lies directly above
the midpoint of the other on a radial line or a
central axis of symmetry. Figures 5 through 9
show how the parts for these models may be
drawn. First, a vertex part of the inner solid
is laid out, but this part is shown in relation
to the entire face of the inner solid. Then a
drawing is given for the part needed to make
an edge model of the dual. The lower-case
letters on these drawings indicate where tabs
are needed for cementing the parts together.

You may begin your work of making these
models by first making your own templates or
nets. Then cut out from card stock or stiff
paper a sufficient number of parts, as many as
may be needed in each instance. Next cement
the vertex part into the edge design part, form-
ing a trigonal, tetragonal, or pentagonal cup
or inverted pyramid without a base holding a
vertex part inside it. Finally, cement all these
cups or inverted pyramids together, the lateral
face of one to the lateral face of another, until
the model is complete.

You may, of course, alter the design of any
one of these, or all of them, to show other

Photo 2. Cube or hexahedron (2).
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Photo 3. Octahedron (3). Photo 4. Dodecahedron (4).

relationships with respect to their size, but not
their shape. For example, the inner polyhedron
can be made very small in relation to its dual
in a beginning model. Then several other
models can be made showing successive stages
in the growth of this inner polyhedron until it
reaches the position suggested by the photos.
Continuing growth can then be shown with
more models until the edge model disappears
inside the solid model. This happens when the  photo 5. Icosahedron (5).
vertices of the edge model coincide with the
incenters of the faces of the solid model. A
set of such models would suggest continuous
transformations of these polyhedral shapes.
Such continuous transformations are a rich
source from which many polyhedral relation-
ships are derived.

Although the five regular solids are very
simple shapes in themselves, within them there
lies hidden the whole world of polyhedral sym-
metry. Like musical variations on a theme, the
five regular solids reveal their presence in
countless ways in all the more complex shapes
that will appear later on in this book. You will
see that this is already true in the next set of
uniform polyhedra to be considered (i.e., the
thirteen semiregular solids and their duals).
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(b)

Fig. 5. Patterns for the dual of the tetrahedron (1).
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