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1 ' Preview

1.1 Apologia

The lectures on which this book is based were intended for a
'mixed audience’. According to the context, that phrase might have
certain social connotations, but here it implies a more fundamental dis-
tinction: some of the audience were basically physicists, and others
were basically mathematicians. This distinction, between those who
think in terms of real objects and those who deal in abstract ideas, is
an unfortunate fact of scientific life today.

The desire to be intelligible to two classes of student has been my
main preoccupation in preparing the lectures and writing the book. Con-
sequently, any reader will probably find some material which (to him) is
tiresome and elementary; such material is included for the benefit of
other readers, in the cause of scientific harmony. I have tried to pre-
scribe a proper dose of generality - not too much to discourage those who
have a particular application in mind, nor too little for those who wish to
see the underlying structure.

The book has five chapters, each subdivided into sections, The
first chapter is intended as a broad introduction to the subject, and it is
written in a more informal manner than the rest, There are two short
appendices at the end of the book, and these are referred to in Chapters
2, 3 and 4. Apart from this, there are no references in the main text;

notes and references for each chapter are given at the end of the chapter,
1.2 States on a graph

Our main object of study is a finite system of particles, some of
which interact in pairs. We shall not be concerned with the nature of the

particles, their relative positions, or the kind of interactions; such
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things are important when one studies a particular physical structure,
but they do not lie at the heart of the matter. In order to describe the
pattern of interactions among the particles of the system we shall require
a little of the terminology of graph theory.

A graph consists of a set of vertices and a set of edges, together
with an incidence relation: each edge is incident with either one or two
vertices, Graphs are often represented by diagrams in which the
vertices are points and the edges are line segments joining the relevant
points (see Fig. 1). An edge incident with just one vertex is called a
loop, and is represented as such. Sets of edges incident with the same
pair of vertices are called multiple edges. A graph with no loops or
multiple edges is said to be simple (Fig. 1). We shall adopt the con-
vention that the term 'graph' will always mean 'simple graph', unless

the context indicates otherwise.

Fig. 1. (a) A graph (b) A simple graph

In the ensuing theory it will be usual to think of the vertices of a
graph as a set of particles, where the edges signify the existence of inter-
actions between some pairs of particles.

We shall reserve the notations V and E for the vertex-set and
edge-set of a graph; occasionally, when the graph G needs to be named
explicitly, VG and EG will be used. A graph is said to be connected
if any pair v, w of its vertices may be linked by a path, that is, a

sequence
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of alternate vertices and edges, where € is an edge incident with Vi
and vy (1 =1i=r). If agraph is not connected, it falls into a number
of components, each of which is connected. In terms of a system of
interacting particles, we may separate the system into subsystems, each
of which is independent of the rest and cannot be further subdivided.

Let A be a finite set, and G a graph. A function w from the
vertex-set V of G tothe set A (written w :V = A) assigns to each
vertex an element of A; that is, each particle is given some 'attribute’
or 'configuration' or 'colour'. A function w thus defines a state of the
system of particles represented by the graph, and the set of all such
states will be denoted by (G, A), or just Q.

For theoretical reasons it is convenient to endow the set A with
some algebraic structure. The most apt structure is that of a 'ring’;
that is, we postulate the existence of two operations, + and -, satisfying
the usual rules of arithmetic, except that division (the inverse of the -
operation) is not allowed. All the rings that we consider will contain
elements 0 and 1, with the usual properties of those symbols, and
both operations will be commutative. For each positive integer m, the
set of residues modulo m forms a ring, with the usual operations of
modular arithmetic. We shall denote this special ring by Am. Thus
any non-empty finite set is in one-to-one correspondence with at least
one ring. It follows that a ring structure may be imposed on any finite
set of attributes, without loss of generality, and with some gain. For
many purposes {(but not all) the rings of residues are a sufficient level of
generality.

When A is a ring the states « in Q(G, A) may themselves be
combined by operations derived from the structure of A, In fact, if
w, and w, are such states, then we may define states w, + w, and

wl. wz by the rules

(@, +©)0) =0 () +0,0),

,.0,)F) =0 . 0,0.

The set £ thus becomes a ring itself. In particular, there is a 0-state

0 defined by 0(v) =0 for all v in V, where the second 0 is the zero
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element of A, and similarly a 1-state defined by 1(v) = 1.

In a manner analogous to that used to define 2, we may introduce
the ring & = (G, A) of functions ¢ : E > A, We think of a function
¢ in & as an assignment of a 'flow' ¢(e) toeachedge e of G, In
order to describe the 'direction’ of such a flow, we must choose an
orientation of the graph G; that is, for each edge e of G one of the
two incident vertices is chosen to be the 'positive end' of e, and the
other is chosen to be the 'negative end’. We make the convention that the
single vertex incident with a loop is its positive end. An orientation is
usually represented on a diagram by placing an arrow on each edge,
pointing towards its positive end (Fig. 2). Although the introduction of

Fig. 2. A graph with an orientation

an orientation is necessary in order to yield satisfactory definitions, the
actual orientation chosen is immaterial.

Given a finite graph G with an orientation, we define a matrix
D with |V| rows, labelled by the vertices of G, and |E| columns,

labelled by the edges of G, as follows:

1 if v is the positive end of e;
Dve = -1 if v is the negative end of e;
0 if v is not incident with e.

D is called the incidence matrix of G, with respect to the chosen
orientation. The entries of D are taken to be elements of the ring A;
every ring has elements 0, 1, and -1, although in the case of the
residues modulo 2 (for example) 1 and -1 are the same.

We can now define two important operators, They are:
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the boundary operator 3: (G, A) = Q(G, A)
and the coboundary operator 5 : Q(G, A) = (G, A).

The operator ¢ assigns to each flow ¢ on G a state 99, and 6
assigns to each state w a flow 06w, defined by

w(v).

(@)()= I D .9€);  (Gw)e= I D

ecE VeV ve’
Intuitively, the value of (3¢)(v) represents the net accumulation of flow
at the vertex v. As for 6w, if e is not a loop then there are just two
non-zero terms Dve :aterm Dxe corresponding to the positive end x
of e (DXe = 1), and a term Dye = -1 corresponding to the negative end

y of e, Consequently

(bw)(e) = w(x) - w(y),

and (6w)(e) represents the difference in the values of w at the ends of e.
We shall introduce other notions from graph theory as they are

needed.
1.3 Interaction models

In this section we shall set up a mathematical structure, called
an interaction model, which is the main topic in the remainder of this
book. The physical background motivating the formulation of the model
will be surveyed in the next section.

For the time being, all graphs considered will be simple and
finite. We begin with the set 2 = Q(G, A) of states on a graph G with
values in the ring A. To each state w: V —+ A we assign a complex

number I(w) called the weight of w; in other words I is a function
I1:Q(G, A)=C,

where C denotes the complex numbers. In many instances the values of

I will be real and non-negative. When that is the case we may put

Z= 7 I(w)
wefd
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and interpret the quantity I(w)/Z as being the probability that the par-
ticles of the system have the attributes specified by w.

We shall be concerned with weights which are derived from the
local structure of the graph G in the following way. Any state w has
a coboundary 0w; as explained in the previous section, the value
dw(e) represents the difference in the values of w at the ends of the
edge e. We introduce an 'interaction function' i : A = C, whose value
i(a) is taken to represent the strength of the interaction between two
particles when the difference (in the ring A) of their 'attributes' is a.
Because the interaction should not depend on the order in which the par-
ticles are considered, we shall always assume that i satisfies the
symmetry condition i(a) = i(-a). When the state of the system is speci-
fied by w, the interaction on the edge e of G is given by i[dw(e)];
because of the symmetry condition, this does not depend on the orientation
used in defining 6. We shall take the weight of w to be the product of
these terms over all edges of G. (The reason for the occurrence of a
product, rather than a sum, will appear shortly.) We are now in a
position to recast the foregoing discussion into a set of basic definitions.

An interaction model 9 consists of a ring A and an interaction
function i : A = C, with the property i(a) = i(-a). We write
M = (A, i), signifying that S is an ordered pair.

If we are given an interaction model 9 and a graph G, we shall
speak of the interaction model M on G, and associate with M and G
the weight function

I(w)= I i[éw(e)], (1.3.1)
e€E

and the partition function

ZON, G = 2 Hw)= Y T i[dw(e)] (1.3.2)
wef we ecE
For example, let us consider the very simple model € whose
interaction function is defined by
1 if a#0,

i(a) =
0 if a=0.
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For this function, i[éw(e)] = 0 when w assigns the same element of A
to the two ends of e, and it is equal to 1 otherwise. Consequently
I(w) is zero unless w assigns different 'colours’ to the two ends of each
edge in G, when it is equal to 1. If we use the above notation, then
Z(€, G) is the number of 'proper colourings' of G with ‘Al colours,
where the adjective 'proper’ signifies that adjacent vertices have different
colours. This function has been much studied in graph theory, under the
name of the 'chromatic polynomial'.

In physics, the models studied usually have the property that the
interaction i(a) is real and positive, for all a in A, We shall say that
an interaction model is positive if its interaction function has this property.

Such interaction functions may be written as
i(a) = exp j(a) (a €A),

for some real-valued function j defined on A. The corresponding weight

function I is then of the form
I(w) = exp J(w) (w € 9),
where

J(w)= Y j[6w(e)].
e€E
These remarks (together with the physical principles described in the
next section) explain how the sum of interactions becomes a product in our
general formulation.

Interactions of the kind described in the preceding paragraph have
an interesting additional property, related to the probability interpretation
of the weight function. Suppose that I is any real, positive weight
function on €, and extend I to the subsets of § by putting

IA) = 2 I(w) (g+ACQ),
weA

I{¢#) = 0.

Then I/Z is a probability measure on the subsets of ©, and we may
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define conditional probabilities in the usual way. That is, the conditional
probability that a state belongs to a subset X of &, given that it belongs
to Y, is I(X nY)/A(Y).

Let v be a given vertex of a simple graph G. We shall say that
a real positive weight function I has the Markov property if the following
holds: the conditional probability that a state is w, given that it agrees
with w on all vertices of G except v, depends only on the values of w
at v and the vertices adjacent to v in G. Roughly speaking, the proba-
bility that the system has a particular configuration at v depends only on
its values at the neighbours of v.

It is fairly easy to see that any weight function I, which arises
from a positive interaction model ® = (A, i), has the Markov property.
In view of the fact that interactions occur only between neighbouring
vertices, this is perhaps not too surprising, but a proof seems called for.
First, it is clear from (1. 3. 1) that 1 is real and positive whenever i
is. Now the conditional probability occurring in the definition of the

Markov property is just
I(w)/Z1(8),

where the sum is over all those states 6 which agree with w except at
v. These are the states w, (a € A) defined by

wa(v) = w(v) + a, wa(w) = w(w) (w = v).

In particular, w = w . Now

I

I(wa) 11 i[Gwa(e)]

ecE

1l

(product over edges e incident with v)

X (product over e not incident with v).

Since wa is independent of a except at v, ﬁwa is independent of a,
except on those edges incident with v. Consequently, in the conditional
probability

@)/ 3 Iw,)
acA
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the product terms involving edges not incident with v may be cancelled
throughout. The remaining terms depend only on the values of w at v
and its neighbours, and so I has the Markov property.

A partial converse of the preceding result is also true. If G
satisfies some simple conditions, then given any weight function I on
©(G, A) which has the Markov property, there is some interaction func-
tion i such that I is derived from i by the product formula (1. 3, 1).
This converse enables us to use the interaction model in the study of
stochastic processes on graphs, The equilibrium distributions of such
processes often turn out to have the Markov property; consequently, they

may be described in terms of our interaction model.
1.4 Physical background

An interaction model whose weight function is of the form
I{(w) = exp J(w) is typical of the models studied in statistical mechanics.
The usual distribution of states is the Gibbs canonical distribution,

wherein the weight of a state w is equal to
exp {(-1/kT)H(w) }. (1.4.1)

Here k is an absolute constant, T is the temperature, and H(w) is a
Hamiltonian function representing the energy of the state w. In general,
H(w) will be a sum of terms corresponding to individual interactions, and
so our product formula for I is obtained, as mentioned in the previous
section. The various thermodynamic quantities, such as free energy and
specific heat, may be derived from the partition function considered as

a function of T.

For the purposes of illustration we shall discuss a famous example
of an interaction model - the Ising model of ferromagnetism. In physical
terms, the particles are the atoms of a ferromagnetic substance, each
of which has a magnetic moment or 'spin’. There are just two possible
configurations for each spin, and they are conventionally thought of as
'up' and 'down'. Like spins contribute an amount of energy -1, to the

Hamiltonian, and unlike spins contribute +1L.
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In our notation, the two configurations 'up' and 'down' become the
two elements 0 and 1 of the ring A2 of residues modulo 2. 1In

accordance with the Gibbs distribution, the weight function is of the form
1(w) = exp {{(-1/KT)S@L) } .

So if we put € = exp(L./kT) and define an interaction function i on A2

by the rules

i(0)=¢g i) =€,
we have precisely the weight function of the Ising model g = (Az’ i),
in terms of our definition (1. 3, 1). In fact, we have a set of models, one
for each positive value of the temperature T.

It is fairly easy to find explicit expressions for the partition
function of the Ising model on various well-known graphs. For example,
consider the complete graph Kn’ which has n vertices and 3n(n - 1)
edges, one edge joining each pair of distinct vertices; this graph corres-
ponds to a physical system in which each pair of particles interacts. If
the state w on Kn has ! up-spins and n - I down-spins, then there
are I(n- 1) unlike pairs and $n(n - 1) - Z(n - ) like pairs; so the

weight of w is

I(w) = e%n(n—l)-zl (n-l).

The partition function is

2(9, K ) = gzn(n-1) ;210(?) g 2tn-1) (1.4.2)

There are a couple of fairly simple reduction formulae which can
be employed to advantage, First, if G is a disconnected graph with

(say) two components G1 and G2 then for any model 9 we have
ZOn, G) = ZOn, Gl)Z(E)TZ, Gz)' (1.4.3)

This may be proved directly from the definitions, just by noting that each

state on G splits into a state on G1 and a state on G2, and there are no

10
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