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1 Introduction

How would you describe

o The flickering of a flame?

e The texture of an oil painting?

e Highway traffic during a rush hour?
e Twinkling stars?

e Breaking glass?

e A bowling ball hitting pins?

o Melting ice?

e The flight of a paper airplane?

e The sound of a violin?

These questions do not have simple answers: many are active research areas. There
cannot be a single recipe that covers this whole menu. There are many possible levels
of description; choosing among them depends on your goals and on the available tools.
This text is a tour through those spaces. For example, if you seek to make a mathematical
model of a violin, you could use a numerical model based on a first-principles description.
This lets you match your model parameters to measurements on a real instrument, and
change parameters between a Stradivarius and a Guarneri. However, running it in real
time will require a supercomputer, and the effort to find good parameters for the model
is almost as much work as building a real violin. Alternatively, you could try to use an
analytical (pencil-and-paper) solution to the governing equations; in return for some large
approximations you may be able to find a useful explicit solution, but it might not sound
very good. Finally, you could forget about the underlying governing equations entirely
and experimentally try to find an effective description of how the player’s actions are
related to the sound made by the instrument (which is a reasonable thing to do because
dissipation and symmetries in a system reduce the effective number of degrees of free-
dom [Temam, 1988]). These three approaches (analytical, numerical, and observational)
comprise the three parts of this book.

To build a model there are many decisions that must be made, either explicitly or more
often implicitly. Some of these are shown in Figure 1.1. Each of these is a continuum
rather than a discrete choice. This list is not exhaustive, but it’s important to keep
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2 Introduction
specific <« > general
model . first-principles
estimation " models
numerical « —>  analytical
stochastic <« > deterministic
NICToscopic <€ > macroscopic
discrete <« > continuous
qualitative « > quantitative

Figure 1.1. Some levels of description for mathematical model building.

returning to it: many efforts fail because of an unintentional attempt to decribe either too
much or too little.

These are meta-modeling questions. There are no rigorous ways to make these choices,
but once they’ve been decided there are rigorous ways to use them. There’s no single
definition of a “best” model, although quasi-religious wars are fought over the question.
One good attempt is the Minimum Description Length principle [Rissanen, 1986], es-
sentially Occam’s Razor: the best model is the one that is the smallest (including the
information to specify both the form of the model and the values of the parameters).
Unfortunately, this has two serious problems: finding the minimum description length
for a given problem is an uncomputable task, and it says nothing about the error metric
that will be used to judge the model. A stock trader, civil engineer, cardiologist, and
video game designer have very different standards for success. They differ in the prior
information they have about their problem, and the posterior criteria that they will use
to evaluate and update their model. Ultimately, the strongest useful statement is that the
best model is the one that works best for you.

Surprisingly little ambition is needed to exceed the performance of almost any available
computer, and conversely computer hardware speeds have been racing ahead of the
development of software tools to use them effectively. Where computational speed is
most important, the examples in this book will use efficient portable low-level tools (such
as C and X Windows). On the other hand, where algorithm clarity is most important,
high-level environments will be used (such as Matlab). The appendices provide brief
introductions to these environments.

No single reference text covers the range of subjects in this book. To help access the
literature, each chapter ends with a list of relevant general sources, and then cites the
more specialized literature as needed throughout. Where important ideas are introduced
without any references they are either so well known that they need no further citation,
or are my own results that I have not published elsewhere (the context should make this
distinction clear). And I’ve used URLs (World Wide Web Uniform Resource Locators)
where possible to provide pointers to information on the Internet.
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1.1 SELECTED REFERENCES

[Press et al., 1992] Press, William H., Teukolsky, Saul A., Vetterling, William T., &
Flannery, Brian P. (1992). Numerical Recipes in C: The Art of Scientific
Computing. 2nd edn. New York, NY: Cambridge University Press.

This is warmly recommended for almost any numerical problem. The numerical
analysis literature is full of rigorous results that have little bearing on solving
practical problems; Numerical Recipes gracefully merges theoretical insights
with practical tricks for most useful algorithms. It’s one of those rare books
that’s immediately useful by a beginner but that continues to hold new insights
for an expert.

[Pearson, 1990] Pearson, Carl E. (1990). Handbook of Applied Mathematics: Selected
Results and Methods. 2nd edn. New York: Van Nostrand Reinhold.

This is a good example of one of a number of such large reference volumes that
survey applied mathematics.
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Analytical Models
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Analytical Models 7

The first part of the book looks at analytical models. These are models that you can at
least in theory write down with nothing more than a pencil and a piece of paper, hopefully
arriving at an explicit closed-form solution. Analytical modeling is often, but not always,
done with analytic functions [Saff & Snider, 1993], and so we will usually assume that
the functions we encounter can be expanded in a power series. Analytical models have
been, and continue to be, of great importance because of their power: where they are
applicable, it can be possible to deduce everything there is to know about a system. The
cost for this power is limited applicability — much of the world is simply too complicated
to describe this way.

Analytical models are still important in approximate techniques that do require com-
puters. This includes numerical methods, which can use pieces of analytical solutions to
make the numerical steps much more effective, and symbolic methods that can quan-
titatively expand the effective size of your piece of paper with significant qualitative
implications (such as the ability to do much higher-order perturbation theory).

The first chapter covers ordinary diffevential equations, where a collection of variables
change as a function of one independent variable (such as time). The orbits of the planets
are a classic example. The next chapter adds more independent degrees of freedom
(such as space) to arrive at partial differential equations to describe, for example, the
ripples on the surface of a lake. There is an intimate connection between local differential
equations and the global properties of a system, introduced in the following chapter on
variational methods. The last chapter looks at solutions for stochastic systems. While
being exact about something random might appear to be paradoxical, there are many
powerful techniques for exactly describing the dist#ibution of a random variable without
saying anything about the particular value of the variable.
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2 Ordinary Differential and Difference Equations

21 LINEAR DIFFERENTIAL EQUATIONS

Change is the most interesting aspect of most systems, hence the central importance
across disciplines of differential equations. An ordinary differential equation (ODE) is
an equation (or system of equations) written in terms of an unknown function and its
derivatives with respect to a single independent variable (such as time). Examples include
the familiar equations of classical mechanics and electrical circuits. In the next chapter we
will consider partial differential equations (PDEs), which have multiple independent
variables (such as space, for example in fluid flow or electrodynamics). The subject of
differential equations can appear to be quite tedious. In part it is: it is like learning
spelling and grammar as a necessary prelude to the study of Shakespeare. And in part
it isn’t: there can be beautiful structure lurking behind what appear to be very simple
differential equations. This chapter will concentrate on the canon of linear (or nearly
linear) differential equations; after detouring through many other supporting topics the
book will return to consider nonlinear differential equations in the closing chapter on
time series.
The simplest differential equation can immediately be solved by integration

dy _ _
o~ fO=dy=ft)dt

t
= y(t1) — ylty) = t f() dt (2.1)

(a point that is surprisingly often forgotten). The order of a differential equation is the
highest derivative that occurs, and so the preceeding example is a first-order equation.
If every term involves either the unknown function or its derivatives the equation is said
to be homogeneous; if there is a term that depends on the independent variable alone
(i.e., a forcing term) then the equation is inhomogeneous. If the unknown function does
not appear within powers or more complicated functions, then the differential equation
is linear, and can be written in terms of a linear operator L x(y) defined by
N N—1
=T anT A 0P avaw . @)
There is no need for an Ay coefficient because it can be eliminated by dividing all the
other terms by it. Ly(y) = f(¢) is an inhomogeneous equation, and Ly (y) = 0 is the
associated homogeneous equation.
Linear differential equations are particularly important, in part because they occur so

© in this web service Cambridge University Press & Assessment www.cambridge.org



www.cambridge.org/9780521210508
www.cambridge.org

Cambridge University Press & Assessment
978-0-521-21050-8 — The Nature of Mathematical Modeling
Neil Gershenfeld

Excerpt

More Information

10 Ordinary Differential and Difference Equations

often (particularly in systems that are not strongly driven), and in part because general
techniques exist for solving them (whether or not they really apply to what might be a
nonlinear problem). Although this can be a bit like the proverbial drunk looking for lost
change under a street lamp, it is sensible if it is the only illumination available.

The solution of an Nth-order linear differential equation will contain N unknown
constants that are determined by boundary conditions. If it is an nitial-value problem,
the initial values of N independent functions of the variable and its derivatives are
given (usually, (0), dy/dt(0), ..., dN~"ly/dt"~1(0)). For a boundary-value problem,
boundary conditions are given at both the beginning and the end of an interval.

An N-order homogeneous equation Ly(y) = 0 will have N linearly independent
solutions u;(t), uz(t), ..., un(t). By superposition, an arbitrary linear combination of
them will also be a solution:

N
Yot) = D_ Coun(t) - (23)
n=1
This is the general solution; any solution of the homogeneous equation can be represented
by an appropriate choice of the C)’s. If a particular solution of the inhomogeneous
problem can be found (L x(y,) = f(t)), then the complete solution is y(t) = yg4(t) +y,(t).
The general solution represents the transient response of the system to the boundary
conditions, and the particular solution is the result of the forcing of the system by the
inhomogeneous term.
The simplest linear differential equation has constant coefficients:
N N-1
d™y + A d¥ 'y
dtN diN-1
An important technique for solving differential equations is to guess the functional form
of a solution (called an ansatz, or trial answer), substitute it in, and then see if the
free parameters can be adjusted to make the solution work. Because the solution of a
differential equation is unique as long as the functions defining it are reasonably smooth
and bounded [Coddington & ILevinson, 1984}, if you find a solution then that is the
solution. If we try the guess y = e for the solution of the homogeneous part of equation
(2.4), the result of substituting it in is the characteristic equation

d
Fot Ayl Avy = £O) (2.4)

N+ ANl Ay i r+ A =0 . (2.5)

This Nth-order polynomial has N roots. The real part of the roots represent exponentially
growing or decaying solutions, and the complex part oscillatory behavior. If all of the
roots are distinct:

PN+ AN+ Ay r+ AN = (r—r)r—mr) - (r—rn) (2.6)

then the general solution is
N
yg = Cre™" . @2.7)
n=1

This gives the N linearly independent solutions required for a general solution. However,
if a root has a higher multiplicity

N+ ArVN T Ay r A = —m)M O =Ty - (r—TN) (2.8)
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Figure 2.1. An RC circuit.

then this will provide fewer than N solutions. The missing solutions are found by rec-

ognizing that if Ly(e™) = 0 then

Tt

0 s Oe
srne =L (-

)=meﬂ=0,

& &
wLN(G t) = LN <5ﬁ€

and so forth. Therefore, the M functions

rt) - LN(tlert) =0 ,

(Cl + Czt + C3t2 + ...+ CMtM—l)e'r]t

2.9)

(2.10)

are linearly independent solutions to Ly(y) = 0, and so these can be used as the M
solutions associated with the M-fold root. It might appear that this trick can be used to
generate arbitrarily many solutions by continuing to differentiate, but this is not so: a
derivative of an order higher than the multiplicity of equation (2.8) will give the useless
equation 0 = 0.

As a simple example of a linear constant-coefficient differential equation, consider a
circuit consisting of a resistor and a capacitor (Figure 2.1). The current into the node
from the resistor is (V; — V,)/ R, and the current out of the node into the capacitor is
CV,, and so the governing equation for this circuit is

cv, = Vi= Vo 2.11)
or
RCV,+V, =V, . (2.12)
The characteristic equation gives
~1
RC-r+1=O=>r=ﬁ:>VO=Ae_t/RC. (2.13)

The undriven response of the circuit is to exponentially discharge the capacitor. Now,
let’s assume periodic forcing V; = exp(iwt) and look for a particular solution at this
frequency. The voltage in the circuit is of course a real number; by representing it as a
complex number we can simultaneously keep track of both phase components (sin and
cos). Plugging in the ansatz V, = A exp(iwt) gives

, _ o
ROAiw+A=1 = A= mr (2.14)
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12 Orvdinary Differential and Difference Equations

At low frequencies the output is equal to the input; at high frequencies it rolls off as
1/w (it is a low-pass filter) and is out of phase by 90°. Problem 2.1 covers the important
example of a damped, driven harmonic oscillator.

This completes (more-or-less) everything that there is to know about solving linear
differential equations. The theory is simple and useful. The situation is very different
for nonlinear differential equations, where amidst a sea of insoluble problems live special
tricks for some tractable equations, approximation methods based on some nearby exactly
soluble problems, and qualitative insights into the behavior of classes of solutions. Because
of this, the study of nonlinear differential equations requires either a lot of specialized
attention or else numerical methods.

Another extension of this basic theory is to coupled systems of equations. Once again,
little general can be said about nonlinear systems, but for the case of linear couplings it
is possible to find exact solutions. The next section looks at this for the important case
of coupled oscillators.

22 SYSTEMS OF DIFFERENTIAL EQUATIONS
AND NORMAL MODES

The Nth-order linear differential equation (2.4) can be written as a first-order equation
for an N-dimensional vector

Yo
0N
d
el . = 2.15
dt : ( )
YN -2
YN-1
0 1 0 0 Yo 0
0 0 1 0 %N 0
: : : Lo S Y
0 0 0 1 YN-2 0
—Ay Ay —Anoy -0 A Yn-1 f)

This transformation does not make the problem any simpler (it can be solved by diagonal-
izing the matrix, which requires solving exactly the same characteristic equation), but it
can be convenient to simplify notation by using a vector first-order equation [Gershenfeld
et al., 1983].

This is a simple example of a system of differential equations. Such systems also arise
whenever there are interactions; an important special case is an unforced, undamped
system of masses with coordinates (41, ¥z, . .., yn) = ¥ that have a restoring force that is
an arbitrary linear combination of their positions. The corresponding vector equation is

(2.16)
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If the coupling matrix A is diagonal (A;; = 0 for i # j) then the oscillators will be
independent, but if it isn’t then they won’t. Let’s look for a new set of variables 7 =
M~!., defined by an unknown transformation M, for which these equations decouple:

“Z4Dp.z=0, 2.17)

where D is a diagonal matrix. The required transformation M can be found by changing
variables:

Zig+A-y*=0
M-%+A-M-Z:0
%+M“1-A-M~Z=O
%+D~Z=O (2.18)

andsoM !-A-M=Dor A-M = M- D. This will be the case (remember that D is
diagonal) if the columns of M are the eigenvectors of A (the diagonal elements of D will
then be the eigenvalues of M). This procedure is called diagonalizing. The new variables
here are called normal modes [Goldstein, 1980, Scheck, 1990] and behave exactly like
independent oscillators. There will be as many normal modes as there are degrees of
freedom, unless there are fewer distinct eigenvectors because of degenerate eigenvalues.
Problem 2.2 finds the normal modes for a simple system.

23 LAPLACE TRANSFORMS

Using the characteristic equation to solve a differential equation requires separate steps
to find the general solution, search for a particular solution, and solve for the coefficients
to match the boundary conditions. Laplace transforms provide a convenient alternative,
turning many differential equations into an algebraic problem and giving the complete
solution in a single step.

The one-sided Laplace transform of a function f(t) is defined by

L{f(t)} = F(s) = /0 et f(t) dt . (2.19)

If the integral extended from —oo to 0o this would be the two-sided Laplace transform.
The one-sided transform explicitly includes the initial conditions of the system at ¢t = 0,
and for this reason we will use it; the two-sided transform is used for steady-state problems
for which the initial conditions do not matter.

The Laplace transform is a generalization of the Fourier transform to an arbitrary
complex argument. Its usefulness for differential equations comes from recognizing that
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